Ultra low power CMOS circuits working in subthreshold regime for high temperature and radiation environments

2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000243-000250 ◽  
Author(s):  
E. Boufouss ◽  
L. A. Francis ◽  
P. Gérard ◽  
M. Assaad ◽  
D. Flandre

We present three ultra-low-power CMOS circuits: a temperature sensor, a voltage reference and a comparator developed for an ultra-low-power microsystem (ULP-MST) aiming at temperature sensing in harsh environments. The microsystem has 3 main functions: detecting a user-defined temperature threshold T0, generating a wake-up signal that turns on a data-acquisition microprocessor (located in a safe area) above T0, and measuring temperatures above T0. To achieve ultra-low-power operation, the three CMOS circuits are implemented in Silicon-on-Insulator (SOI) CMOS technology and are optimized to work in the subthreshold regime of the transistors. Since our application is mainly for harsh environment (i.e. high temperature and radiation), the chip has been designed using a suitable 1-μm SOI-CMOS technology. Simulations have been performed over the different process corners to verify functionality after fabrication. The typical power dissipation at high temperature (up to 240°C) is less than 100 μW at 5 V supply voltage. Measurements have validated correct operation in the temperature range from −40°C to 300°C before radiation and to 125°C after radiation up to now which will be extended further with a new set-up. Irradiation has been performed from 10 to 30 kGy. Such very high doses cause a shift down of output voltage values, which leads to a change of the temperature detection level and also increases the power dissipation by up to six times. Annealing effects help the partial recovery of the device operation at high temperature and the remote microprocessor enables calibration after radiation to readjust the temperature detection level.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ismail Gassoumi ◽  
Lamjed Touil ◽  
Bouraoui Ouni ◽  
Abdellatif Mtibaa

Quantum-dot cellular automata (QCA) technology is one of the emerging technologies that can be used for replacing CMOS technology. It has attracted significant attention in the recent years due to its extremely low power dissipation, high operating frequency, and a small size. In this study, we demonstrate an n-bit parity generator circuit by utilizing QCA technology. Here, a novel XOR gate is used in the synthesis of the proposed circuit. The proposed gate is based on electrostatic interactions between cells to perform the desired function. The comparison results demonstrate that the designed QCA circuits have advantages compared to other circuits in terms of cell count, area, delay, and power consumption. The QCADesigner software, as widely used QCA circuit design and verification, has been used to implement and to verify all of the designs in this study. Power dissipation has been computed for the proposed circuit using accurate QCAPro power estimator tool.


Author(s):  
Megan C. Casey ◽  
Bharat L. Bhuva ◽  
Sarah A. Nation ◽  
Oluwole A. Amusan ◽  
T. Daniel Loveless ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document