Compensation Scheme of a 50 Ω Bond Wire Interconnect Using Time Domain Reflectometry

2011 ◽  
Vol 8 (3) ◽  
pp. 114-120
Author(s):  
K. Webb ◽  
H. Song

A compensation scheme that reduces the impact of the excess reactance of bond wires is introduced. From the 3D finite element code and the time domain reflectometry (TDR), physical models were evaluated and the excess reactance of the signal path was determined to optimize the compensation structure. The presented method can be employed to reduce the negative impact caused by the excess reactances in bond wires for high signal integrity integrated circuit (IC) packaging applications.

2018 ◽  
Vol 83 (3) ◽  
pp. 30601 ◽  
Author(s):  
Abelin Kameni ◽  
Florent Loete ◽  
Lionel Pichon

This paper presents experimental and numerical studies of a chafing soft defect realized by partially milling coaxial cables. The approach is based on the time domain reflectometry technique. The numerical model consists in solving Maxwell’s equations while an incident Gaussian pulse is injected on the faulty line. The experimental time domain measurements are performed with a vector network analyzer. To get the experimental results comparable to the numerical ones, a process to denoise the measured impulse responses is proposed. The reflection coefficients obtained are compared to those given by a classical approach based on a chain matrix model to show the impact of 3D numerical modeling in studying soft faults.


2021 ◽  
Vol 37 (1_suppl) ◽  
pp. 1420-1439
Author(s):  
Albert R Kottke ◽  
Norman A Abrahamson ◽  
David M Boore ◽  
Yousef Bozorgnia ◽  
Christine A Goulet ◽  
...  

Traditional ground-motion models (GMMs) are used to compute pseudo-spectral acceleration (PSA) from future earthquakes and are generally developed by regression of PSA using a physics-based functional form. PSA is a relatively simple metric that correlates well with the response of several engineering systems and is a metric commonly used in engineering evaluations; however, characteristics of the PSA calculation make application of scaling factors dependent on the frequency content of the input motion, complicating the development and adaptability of GMMs. By comparison, Fourier amplitude spectrum (FAS) represents ground-motion amplitudes that are completely independent from the amplitudes at other frequencies, making them an attractive alternative for GMM development. Random vibration theory (RVT) predicts the peak response of motion in the time domain based on the FAS and a duration, and thus can be used to relate FAS to PSA. Using RVT to compute the expected peak response in the time domain for given FAS therefore presents a significant advantage that is gaining traction in the GMM field. This article provides recommended RVT procedures relevant to GMM development, which were developed for the Next Generation Attenuation (NGA)-East project. In addition, an orientation-independent FAS metric—called the effective amplitude spectrum (EAS)—is developed for use in conjunction with RVT to preserve the mean power of the corresponding two horizontal components considered in traditional PSA-based modeling (i.e., RotD50). The EAS uses a standardized smoothing approach to provide a practical representation of the FAS for ground-motion modeling, while minimizing the impact on the four RVT properties ( zeroth moment, [Formula: see text]; bandwidth parameter, [Formula: see text]; frequency of zero crossings, [Formula: see text]; and frequency of extrema, [Formula: see text]). Although the recommendations were originally developed for NGA-East, they and the methodology they are based on can be adapted to become portable to other GMM and engineering problems requiring the computation of PSA from FAS.


Irriga ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 564-577 ◽  
Author(s):  
Leonardo Do Nascimento Lopes ◽  
Elton Martins ◽  
Bruno De Lima Santoro ◽  
Claudinei Fonseca Souza

CARACTERIZAÇÃO DA DISTRIBUIÇÃO DA ÁGUA NO SOLO PARA IRRIGAÇÃO POR GOTEJAMENTO  Leonardo do Nascimento Lopes1; Elton Martins2; Bruno de Lima Santoro2; Claudinei Fonseca Souza31Universidade de Taubaté, Unitau, Taubaté, SP,  [email protected] Engenharia Civil e Ambiental, Universidade de Taubaté, Taubaté, Unitau, SP 3Departamento de Recursos Naturais e Proteção Ambiental, Universidade Federal São Carlos, São Carlos, SP  1 RESUMO O conhecimento da distribuição da água no solo é de grande importância para a agricultura, uma vez que a água é um dos fatores que mais influenciam o rendimento das culturas. Existem muitas técnicas utilizadas para o monitoramento do conteúdo de água do solo, a reflectometria domínio do tempo (TDR) tem sido difundida entre os pesquisadores por apresentar várias vantagens, entre as quais a determinação em tempo real e a possibilidade de leituras automatizadas. O principal objetivo desta pesquisa foi avaliar a distribuição da água no perfil de um Latossolo Vermelho-Amarelo. Sondas de Reflectometria no domínio do Tempo (TDR) foram utilizadas para monitorar a distribuição de água no solo aplicada através de gotejadores de fluxo constante nas taxas de 2, 4 e 8 Lh-1. Considerando os resultados de diferentes perfis, observa-se um maior armazenamento da água próximo do gotejador diminuindo progressivamente para frente de molhamento. Aproximadamente, um terço da água aplicada (33%) foi armazenado na primeira camada (0-0,10 m) para todos os ensaios. Comparando diferentes taxas de aplicação, observa-se maior armazenamento de água para o gotejador de 8L h-1, com 30, 33 e 34% de água aplicada acumulada na primeira camada (0-0.10 m) para gotejadores de 2, 4 e 8L h-1, respectivamente. Os resultados sugerem que, com base no volume e frequência utilizada neste experimento, seria vantajoso aplicar pequenas quantidades de água em intervalos mais frequentes para reduzir perdas por percolação. UNITERMOS: TDR, conteúdo de água, bulbo molhado  LOPES, L. N.; MARTINS, E.; SANTORO, B. L.; SOUZA, C. F.WATER DISTRIBUTION CHARACTERIZATION IN SOIL FOR DRIP IRRIGATION   2 ABSTRACT Knowledge of water distribution in soil is of great importance to agriculture, since water is one of the factors that most influence the yield of crops. There are many techniques used to monitor soil water content. The time domain reflectometry (TDR) has been widespread among researchers because it presents several advantages, among which the determination in real time and possibility of automated readings. The main goal of this research was to evaluatethe water distribution in a profile of Red-Yellow Oxisol. Time domain reflectometry (TDR) probes were used to monitor the water distribution from drippers discharging at constant flow rates of 2, 4 and 8 Lh-1 in soil. Considering results from different profiles, we observed greater water storage near the dripper decreasing gradually towards the wetting front. About one third of the applied water (33%) was stored in the first layer (0-0.10 m) for all experiments. Comparing different dripper flow rates, we observed higher water storage for 8 L h-1, with 30, 33 and 34% of applied water accumulating in the first layer (0-0.10m) for dripper flow rates of 2, 4 and 8 L h-1, respectively. The results suggest that based on the volume and frequency used in this experiment, it would be advantageous to apply small amounts of water at more frequent intervals to reduce deep percolation losses of applied water. KEYWORDS: TDR, water content, wetted soil volume


2020 ◽  
Vol 62 (7) ◽  
pp. 408-415
Author(s):  
M Ingram ◽  
A Gachagan ◽  
A Nordon ◽  
A J Mulholland ◽  
M Hegarty

Experimental variation from ultrasonic hardware is one source of uncertainty in measured ultrasonic data. This uncertainty leads to a reduction in the accuracy of images generated from these data. In this paper, a quick, easy-to-use and robust methodology is proposed to reduce this uncertainty in images generated using the total focusing method (TFM). Using a 128-element linear phased array, multiple full matrix capture (FMC) datasets of a planar reflection are used to characterise the experimental variation associated with each element index in the aperture. Following this, a methodology to decouple the time-domain error associated with transmission and reception at each element index is presented. These time-domain errors are then introduced into a simulated array model used to generate the two-way pressure profile from the array. The side-lobe-to-main-lobe energy ratio (SMER) and beam offset are used to quantify the impact of these measured time-domain errors on the pressure profile. This analysis shows that the SMER is raised by more than 6 dB and the beam is offset by more than 1 mm from its programmed focal position. This calibration methodology is then demonstrated using a steel non-destructive testing (NDT) sample with three side-drilled holes (SDHs). The time delay errors from transmission and reception are introduced into the time-of-flight (TOF) calculation for each ray path in the TFM. This results in an enhancement in the accuracy of defect localisation in the TFM image.


Author(s):  
Shiang-Lung Koo ◽  
Han-Shue Tan ◽  
Masayoshi Tomizuka

Longitudinal ride comfort is one of the most crucial features to most advanced vehicle control systems. Literature review shows that the ride comfort analysis in vehicle longitudinal motion can be divided into two categories: time domain and frequency domain. Most vehicle longitudinal control designs incorporate jerk and acceleration constraints from the time-domain comfort criterion. However, the vehicle longitudinal characteristics in the frequency range important to passenger ride comfort are rarely discussed in the vehicle control literature. This paper proposes an improved vehicle longitudinal model that captures tire and suspension modes accurately and investigates the impact of these often-ignored vehicle resonant modes to ride comfort. This study shows that the "tire-mode switching behavior" affects longitudinal ride comfort of a stopping vehicle rather than the suspension. A passenger car was tested as an example, and the collected data verified the analytical prediction from the improved vehicle longitudinal model.


2011 ◽  
Vol 110-116 ◽  
pp. 971-976
Author(s):  
Hong You Wang ◽  
Jin Guang Li

Micro-strip line is a kind of transmission line that is the most widely used in microwave integrated circuit. With the development of microwave integrated circuits and the increasing work frequency of the micro-strip line, a higher requirement for its electromagnetic compatibility has been raised. Finite-Difference Time-Domain (FDTD) method has characteristics of good adaptability in the analysis of electromagnetic compatibility issues and superiority in complexity of the structure modeling. For these reasons, this Article uses FDTD method which is widely used in electromagnetic field calculation to analyze the time-domain of micro-strip line, calculates its current and voltage induced in ports and discuss the response feature under different radiation conditions.


1982 ◽  
Vol 19 (4) ◽  
pp. 511-517 ◽  
Author(s):  
T. H. W. Baker ◽  
J. L. Davis ◽  
H. N. Hayhoe ◽  
G. C. Topp

The time-domain reflectometry technique was compared with the temperature measurement method for locating the frozen–unfrozen interface in water and sandy soils. This technique depends on the high-frequency (1–1000 MHz) electrical properties of water that change significantly and abruptly between the liquid and solid phases. Parallel wire transmission lines were inserted into the soil to guide electromagnetic pulses produced by a time-domain reflectometer (TDR). The frozen–unfrozen interface produced reflections measured by the TDR which were in turn used to locate the interface as it moved along the transmission line. In the laboratory it was possible to locate the interface using the TDR to within ±0.5 cm and in the field to within ±2.4 cm. These errors were equal to those associated with the temperature measurements. Keywords: soil freezing, temperature measurements, dielectric constant, time-domain reflectometry.


Sign in / Sign up

Export Citation Format

Share Document