Effects of Fe on the Kirkendall Void Formation of Sn-3.5Ag-xFe/Cu Solder Joints

2010 ◽  
Vol 2010 (1) ◽  
pp. 000294-000297 ◽  
Author(s):  
S. H. Kim ◽  
Jin Yu

Ternary Sn-3.5Ag-xFe solders with varying amount of Fe; 0.1, 0.5, 1.0, and 2.0 wt. % were reacted with Cu UBM which was electroplated using SPS additive and characteristics of Kirkendall void formation at the solder joints were investigated. Results indicate that the propensity to form Kirkendall voids at the solder joint decreased with the Fe content. It showed that Fe dissolved in the Cu UBM and reduced the segregation of S atoms to the Cu3Sn/Cu interface, which suppressed the nucleation of Kirkendall voids at the interface.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yanruoyue Li ◽  
Guicui Fu ◽  
Bo Wan ◽  
Zhaoxi Wu ◽  
Xiaojun Yan ◽  
...  

Purpose The purpose of this study is to investigate the effect of electrical and thermal stresses on the void formation of the Sn3.0Ag0.5Cu (SAC305) lead-free ball grid array (BGA) solder joints and to propose a modified mean-time-to-failure (MTTF) equation when joints are subjected to coupling stress. Design/methodology/approach The samples of the BGA package were subjected to a migration test at different currents and temperatures. Voltage variation was recorded for analysis. Scanning electron microscope and electron back-scattered diffraction were applied to achieve the micromorphological observations. Additionally, the experimental and simulation results were combined to fit the modified model parameters. Findings Voids appeared at the corner of the cathode. The resistance of the daisy chain increased. Two stages of resistance variation were confirmed. The crystal lattice orientation rotated and became consistent and ordered. Electrical and thermal stresses had an impact on the void formation. As the current density and temperature increased, the void increased. The lifetime of the solder joint decreased as the electrical and thermal stresses increased. A modified MTTF model was proposed and its parameters were confirmed by theoretical derivation and test data fitting. Originality/value This study focuses on the effects of coupling stress on the void formation of the SAC305 BGA solder joint. The microstructure and macroscopic performance were studied to identify the effects of different stresses with the use of a variety of analytical methods. The modified MTTF model was constructed for application to SAC305 BGA solder joints. It was found suitable for larger current densities and larger influences of Joule heating and for the welding ball structure with current crowding.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000337-000340
Author(s):  
S. H. Kim ◽  
Jin Yu

In this study, electroplated Cu films were pre-annealed at T (T = 673, 773, 873 K) for varying times. Sn-3.5Ag solder reflowed over the Cu films and subsequently aged at 150°C for 240 hrs. Effects of pre-annealing on the microstructure of Cu films, as well as contents of organic impurities incorporated in the Cu films were investigated. After solder reflow, the formation of Kirkendall voids at Cu3Sn/Cu interface was observed from SEM micrographs. Results show that the pre-annealing process significantly suppressed Kirkendall void formation in the Sn-3.5Ag/Cu solder joints. A line fraction of voids at the Cu3Sn/Cu interface was definitely suppressed in the case of 500°C and 600°C pre-annealed samples compared to as-deposited Cu sample. SIMS analyses revealed that pre-annealing reduced the level of impurities in the Cu films, especially S and C. The mechanism of suppressing Kirkendall voids at the Cu3Sn/Cu interface was presented by schematic diagram, and it could be seen that pre-annealing method has a potential to enhance solder joint reliability.


2011 ◽  
Vol 687 ◽  
pp. 80-84
Author(s):  
Chang Hua Du ◽  
Hai Jian Zhao ◽  
Li Meng Yin ◽  
Fang Chen

As solder joints become increasingly miniaturized to meet the severe demands of future electronic packaging, the thickness of intermetallic compounds (IMC) in solder joint continuously decreases, while, the IMC proportion to the whole solder joint increases. So IMC plays a more and more important role in the reliability of microelectronic structure and microsystems. In this paper, the formation and growth behavior, along with the composition of IMC at the interface of Sn-based solders/Cu substrate in soldering were reviewed comprehensively. The effect of isothermal aging, thermal-shearing cycling and electromigration on the interfacial IMC growth and evolution were also presented. Furthermore, the formation mechanism of Kirkendall voids during thermal aging was introduced. In addition, the effect of the interfacial IMC on mechanical properties of solder joints was in-depth summarized. Adopting an appropriate flux to control the thickness of the IMC to improve the reliability of solder joints and electronic products was proposed in the end of this paper.


2007 ◽  
Vol 37 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Feng Gao ◽  
Hiroshi Nishikawa ◽  
Tadashi Takemoto

2013 ◽  
Vol 2013 (1) ◽  
pp. 000109-000114
Author(s):  
Hao Zhang ◽  
Qing-Sheng Zhu ◽  
Zhi-Quan Liu ◽  
Li Zhang ◽  
Hongyan Guo ◽  
...  

Fe-Ni films with compositions of Fe-75Ni, Fe-50Ni, and Fe-30Ni were used as under bump metallization (UBM) to evaluate the interfacial reliability of SnAgCu/Fe-Ni solder joints through ball shear test, high temperature storage, as well as temperature cycling. The shear strength for Fe-75Ni, Fe-50Ni, and Fe-30Ni solder joints after reflow were 42.57, 53.94, 53.98 MPa respectively, which are all satisfied with the requirement of industrialization (>34.3 MPa ). High temperature storage was conducted at 150°C and 200°C respectively. It was found that higher Fe content in Fe-Ni layer had the ability to inhibit the mutual diffusion at interface region at 150°C, and the growth speed of intermetallic compound (IMC) decreased with the increase of Fe concentration. When stored at 200°C, the thickness of IMC would reach a limitation for all these three films after 4 days, and cracks occurred at the interface between IMC and Fe-Ni layer. Temperature cycling tests revealed that SnAgCu/Fe-50Ni solder joint had the lowest failure rate (less than 10%), which has the best interfacial reliability among three compositions.


2005 ◽  
Vol 97 (2) ◽  
pp. 024508 ◽  
Author(s):  
Kejun Zeng ◽  
Roger Stierman ◽  
Tz-Cheng Chiu ◽  
Darvin Edwards ◽  
Kazuaki Ano ◽  
...  

2021 ◽  
Author(s):  
Ping-Chen Chiang ◽  
Yu-An Shen ◽  
Chih-Ming Chen

Abstract Void formation is a critical reliability concern for solder joints in electronic packaging. The control of microstructures and impurity quantities in Cu electroplated films significantly affects the void formation at the joint interface, but the studies for their comparison are seldom. In this study, three Cu films (termed as A, B, and C) are fabricated using an electroplating process. The Cu A film has a facted grain texture embedded with twins while Cu B and C have a similar columnar texture. After thermal aging at 200°C for 1000 h, the SAC 305 (Sn-3.0Ag-0.5Cu) solder joints with Cu A and B exhibit a robust interfacial structure without voids. However, microstructural collapse is observed in the solder joint of SAC 305/Cu C, where many crevives parallel to the interface are formed. Based on the microanalysis, the concentration of impurity is higher in the Cu C film than those in Cu A and B. Moreover, discrete voids rather than continuous crevices are presented in the SAC305/Cu C system when the impurity concentration in Cu C is reduced. The findings demonstrate that the impurity control in the Cu electroplated film is critical for the control of void/crevice formation in the electronic solder joints.


2010 ◽  
Vol 108 (8) ◽  
pp. 083532 ◽  
Author(s):  
Sunghwan Kim ◽  
Jin Yu

Sign in / Sign up

Export Citation Format

Share Document