Virtual Ground Fence: A Simple Method for Protection against High Frequency Simultaneous Switching Noise

2012 ◽  
Vol 2012 (1) ◽  
pp. 001081-001084 ◽  
Author(s):  
Jesse Bowman ◽  
A. Ege Engin

When integrating sensitive RF analog devices with complex VLSI digital components, simultaneously switching drivers cause supply voltage fluctuations which can propagate both horizontally and vertically between the power/ground planes. The same voltage source on a printed circuit board can be shared to increase power efficiency and reduce space used. In order to accomplish this, on board filtering is needed to isolate the noise between these two types of devices for proper operation. Hence, accurate estimation and improvement of the performance of power/ground planes is critical in a mixed-signal system. We present a new method to minimize the noise transfer at high frequencies to the power distribution system, called the Virtual Ground Fence. At its basic level, the Virtual Ground Fence consists of quarter-wave transmission-line stubs that act as short circuits between power and ground planes at their design frequency. We will present various configurations of Virtual Ground Fence for different coupling scenarios.

2019 ◽  
Vol 125 ◽  
pp. 14006
Author(s):  
Ahmed Jumui Sumoi Fomba ◽  
Hermawan Hermawan ◽  
Trias Andromeda ◽  
Mochammad Facta ◽  
Iwan Setiawan

This paper presents a simulation of a grid-connected photovoltaic power system. A complex model of power distribution system is developed in MATLAB Simulink, then it will be simulated to determine an amount of power delivered to the grid based on irradiance and temperature. Solar irradiance data collection is conducted using a solar irradiance meter. These weather data (solar irradiances and temperatures) are transformed into signal inputs and model through a grid-tied Photovoltaic (PV) model system which consists of PV, incremental conductance Maximum Power Point Tracking (MPPT) method, DC-DC boost converter, inverter, voltage source converter (VSC) control algorithms, and grid equipment. The output variables can be related to current, voltage or power. However, tracing of the current-voltage (I-V) characteristics or power-voltage (P-V) characteristics are the vital need to grid-tied PV system operation. Changes in solar irradiance and temperature imply changes in output variables. Detailed modelling of the effect of irradiance and temperature, on the parameters of the PV module and the output parameters will be discussed. With the aid of this model, one can have a feasible idea about the solar energy generation potential at given locations. This comprehensive model is simulated using MATLAB/Simulink software.


2021 ◽  
Vol 18 (1) ◽  
pp. 40-46
Author(s):  
Shahrokh Shojaeian ◽  
Sajjad Hashemi Rizi

Abstract In this paper, a proposed algorithm based on Particle Swarm Optimization (PSO) is used to present a simple method for data calibration of reliability indices in electrical power distribution networks. The main feature of the proposed method is its comprehensiveness, since the whole reliability indices can be calibrated using a proper objective function. In order to evaluate the effectiveness of the suggested algorithm, calculations are made on the well-known IEEE-RBTS Bus2 test system. The results confirm the simplicity and validation of the proposed method, and verify that by applying the proposed method, the computation speed for data calibration can be reduced as well.


Author(s):  
Kundeti Krishna Rao , M Sonia

Generally, one of the custom power device in FACTS called unified power quality conditioner, which is used to compensate the voltage and current-related Power Quality issues in the distribution systems. The proposed UPQC technology have an advantage of reduced dc-link voltage without compromising its compensation capability. This new method also helps to meet the requirement of dc-link voltage for the shunt and series active filters of the UPQC. This type of topology has a capacitor in series with the interfacing inductor across the shunt active filter for filtering purpose, and the system neutral is also considered and directly connected to neutral of distribution system avoid the requirement of the fourth leg in the voltage source inverter. This paper also presents a concept for improving power quality of a power distribution system such as an FUZZY logic controller along with the UPQC control strategy. The simulation results are compared for both conventional PI controller and FUZZY controller.


2016 ◽  
Vol 40 (3) ◽  
pp. 762-775 ◽  
Author(s):  
Aditi Chatterjee ◽  
Kanungobarada Mohanty ◽  
Vinaya Sagar Kommukuri ◽  
Kishor Thakre

Acknowledgement of renewable sources of energy as substitute energy sources for power production has expanded the number of distributed generation plants being incorporated into the conventional power distribution system. The single-phase voltage source inverter allying the photovoltaic plant with the grid has to address various issues identified with the quality of current injected into the grid, output power factor and power exchange between the plant and the grid. This paper concentrates on the investigation, design and implementation of a digital predictive current control technique known as the model predictive current controller for the control of single-phase photovoltaic distributed generation plants. The performance of the controller is evaluated under varied operating conditions. The proposed current controller is compared with the conventional proportional–integral controller in terms of its design methodology, steady state and dynamic response. The simulation and experimental results validates the effectiveness of the proposed model predictive current controller.


Author(s):  
V. Mohanbabu ◽  
◽  
Sk. Moulali ◽  
Ju Chan Na ◽  
Peng Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document