scholarly journals The Strepsiptera-Odyssey: the history of the systematic placement of an enigmatic parasitic insect order

Entomologia ◽  
2013 ◽  
pp. e4 ◽  
Author(s):  
H. Pohl ◽  
R.G. Beutel

The history of the phylogenetic placement of the parasitic insect order Strepsiptera is outlined. The first species was described in 1793 by P. Rossi and assigned to the hymenopteran family Ichneumonidae. A position close to the cucujiform beetle family Rhipiphoridae was suggested by several earlier authors. Others proposed a close relationship with Diptera or even a group Pupariata including Diptera, Strepsiptera and Coccoidea. A subordinate placement within the polyphagan series Cucujiformia close to the wood-associated Lymexylidae was favored by the coleopterist R.A. Crowson. W. Hennig considered a sistergroup relationship with Coleoptera as the most likely hypothesis but emphasized the uncertainty. Cladistic analyses of morphological data sets yielded very different placements, alternatively as sistergroup of Coleoptera, Antliophora, or all other holometabolan orders. Results based on ribosomal genes suggested a sistergroup relationship with Diptera (Halteria concept). A clade Coleopterida (Strepsiptera and Coleoptera) was supported in two studies based on different combinations of protein coding nuclear genes. Analyses of data sets comprising seven or nine genes (7 single copy nuclear genes), respectively, yielded either a subordinate placement within Coleoptera or a sistergroup relationship with Neuropterida. Several early hypotheses based on a typological approach − affinities with Diptera, Coleoptera, a coleopteran subgroup, or Neuropterida − were revived using either a Hennigian approach or formal analyses of morphological characters or different molecular data sets. A phylogenomic approach finally supported a sistergroup relationship with monophyletic Coleoptera.

1993 ◽  
Vol 24 (2) ◽  
pp. 121-137 ◽  
Author(s):  
Ward C. Wheeler ◽  
Ranhy Bang ◽  
Randall T. Schuh

AbstractThe monophyly of the 7 infraorders of Heteroptera and history of higher group concepts and interrelationships within the Heteroptera are briefly reviewed. Data from 31 morphological characters are combined with 669 bases of 18S nuclear rDNA for 29 taxa, including several outgroups to the Heteroptera, to produce a phylogeny based on the total available evidence. The molecular data alone and in conjunction with morphological data indicate that: the Homoptera are probably not monophyletic; the Auchenorrhyncha are the sister group of Coleorrhyncha + Heteroptera ; the Enicocephalomorpha are the sister group of remaining Heteroptera; the Dipsocoromorpha are the sister group of remaining Heteroptera; the Gerromorpha are the sister group of remaining Heteroptera; the Nepomorpha are the sister group of remaining Heteroptera; the Leptopodomorpha are the sister group of the Cimicomorpha + Pentatomomorpha. The molecular evidence corroborates the morphologically based theory of a sister group relationship between Aradoidea and trichophoran Pentatomomorpha. This scheme deviates from that previously published by Schuh, in which the Leptopodomorpha were treated as the sister group of the Nepomorpha.


Zootaxa ◽  
2004 ◽  
Vol 680 (1) ◽  
pp. 1 ◽  
Author(s):  
ARNE NYGREN

Autolytinae is revised based on available types, and newly collected specimens. Out of 170 nominal species, 18 are considered as incertae sedis, 43 are regarded as junior synonyms, and 25 are referred to as nomina dubia. The relationships of Autolytinae is assessed from 51 morphological characters and 211 states for 76 ingroup-taxa, and 460 molecular characters from mitochondrial 16S rDNA and nuclear 18S rDNA for 31 ingroup-taxa; outgroups include 12 non-autolytine syllid polychaetes. Two analyses are provided, one including morphological data only, and one with combined morphological and molecular data sets. The resulting strict consensus tree from the combined data is chosen for a reclassification. Three main clades are identified: Procerini trib. n., Autolytini Grube, 1850, and Epigamia gen. n. Proceraea Ehlers, 1864 and Myrianida Milne Edwards, 1845 are referred to as nomen protectum, while Scolopendra Slabber, 1781, Podonereis Blainville, 1818, Amytis Savigny, 1822, Polynice Savigny, 1822, and Nereisyllis Blainville, 1828 are considered


2021 ◽  
Author(s):  
E. J. Thompson ◽  
Melodina Fabillo

The taxonomy of Neurachninane has been unstable, with its member genera consisting of Ancistrachne, Calyptochloa, Cleistochloa, Dimorphochloa, Neurachne, Paraneurachne and Thyridolepis, changing since its original circumscription that comprised only the latter three genera. Recent studies on the phylogeny of Neurachninae have focused primarily on molecular data. We analysed the phylogeny of Neurachninae on the basis of molecular data from seven molecular loci (plastid markers: matK, ndhF, rbcL, rpl16, rpoC2 and trnLF, and ribosomal internal transcribed spacer, ITS) and morphological data from 104 morphological characters, including new taxonomically informative micromorphology of upper paleas. We devised an impact assessment scoring (IAS) protocol to aid selection of a tree for inferring the phylogeny of Neurachninae. Combining morphological and molecular data resulted in a well resolved phylogeny with the highest IAS value. Our findings support reinstatement of subtribe Neurachninae in its original sense, Neurachne muelleri and Dimorphochloa rigida. We show that Ancistrachne, Cleistochloa and Dimorphochloa are not monophyletic and Ancistrachne maidenii, Calyptochloa, Cleistochloa and Dimorphochloa form a new group, the cleistogamy group, united by having unique morphology associated with reproductive dimorphism.


2018 ◽  
Vol 19 (10) ◽  
pp. 3262 ◽  
Author(s):  
Yongtan Li ◽  
Jun Zhang ◽  
Longfei Li ◽  
Lijuan Gao ◽  
Jintao Xu ◽  
...  

Pyrus hopeiensis is a valuable wild resource of Pyrus in the Rosaceae. Due to its limited distribution and population decline, it has been listed as one of the “wild plants with a tiny population” in China. To date, few studies have been conducted on P. hopeiensis. This paper offers a systematic review of P. hopeiensis, providing a basis for the conservation and restoration of P. hopeiensis resources. In this study, the chloroplast genomes of two different genotypes of P. hopeiensis, P. ussuriensis Maxin. cv. Jingbaili, P. communis L. cv. Early Red Comice, and P. betulifolia were sequenced, compared and analyzed. The two P. hopeiensis genotypes showed a typical tetrad chloroplast genome, including a pair of inverted repeats encoding the same but opposite direction sequences, a large single copy (LSC) region, and a small single copy (SSC) region. The length of the chloroplast genome of P. hopeiensis HB-1 was 159,935 bp, 46 bp longer than that of the chloroplast genome of P. hopeiensis HB-2. The lengths of the SSC and IR regions of the two Pyrus genotypes were identical, with the only difference present in the LSC region. The GC content was only 0.02% higher in P. hopeiensis HB-1. The structure and size of the chloroplast genome, the gene species, gene number, and GC content of P. hopeiensis were similar to those of the other three Pyrus species. The IR boundary of the two genotypes of P. hopeiensis showed a similar degree of expansion. To determine the evolutionary history of P. hopeiensis within the genus Pyrus and the Rosaceae, 57 common protein-coding genes from 36 Rosaceae species were analyzed. The phylogenetic tree showed a close relationship between the genera Pyrus and Malus, and the relationship between P. hopeiensis HB-1 and P. hopeiensis HB-2 was the closest.


2020 ◽  
Author(s):  
Johannes S Neumann ◽  
Rob Desalle ◽  
Apurva Narechania ◽  
Bernd Schierwater ◽  
Michael Tessler

Abstract There are considerable phylogenetic incongruencies between morphological and phylogenomic data for the deep evolution of animals. This has contributed to a heated debate over the earliest-branching lineage of the animal kingdom: the sister to all other Metazoa (SOM). Here, we use published phylogenomic data sets ($\sim $45,000–400,000 characters in size with $\sim $15–100 taxa) that focus on early metazoan phylogeny to evaluate the impact of incorporating morphological data sets ($\sim $15–275 characters). We additionally use small exemplar data sets to quantify how increased taxon sampling can help stabilize phylogenetic inferences. We apply a plethora of common methods, that is, likelihood models and their “equivalent” under parsimony: character weighting schemes. Our results are at odds with the typical view of phylogenomics, that is, that genomic-scale data sets will swamp out inferences from morphological data. Instead, weighting morphological data 2–10$\times $ in both likelihood and parsimony can in some cases “flip” which phylum is inferred to be the SOM. This typically results in the molecular hypothesis of Ctenophora as the SOM flipping to Porifera (or occasionally Placozoa). However, greater taxon sampling improves phylogenetic stability, with some of the larger molecular data sets ($>$200,000 characters and up to $\sim $100 taxa) showing node stability even with $\geqq100\times $ upweighting of morphological data. Accordingly, our analyses have three strong messages. 1) The assumption that genomic data will automatically “swamp out” morphological data is not always true for the SOM question. Morphological data have a strong influence in our analyses of combined data sets, even when outnumbered thousands of times by molecular data. Morphology therefore should not be counted out a priori. 2) We here quantify for the first time how the stability of the SOM node improves for several genomic data sets when the taxon sampling is increased. 3) The patterns of “flipping points” (i.e., the weighting of morphological data it takes to change the inferred SOM) carry information about the phylogenetic stability of matrices. The weighting space is an innovative way to assess comparability of data sets that could be developed into a new sensitivity analysis tool. [Metazoa; Morphology; Phylogenomics; Weighting.]


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mengli Wang ◽  
Xin Wang ◽  
Jiahui Sun ◽  
Yiheng Wang ◽  
Yang Ge ◽  
...  

Abstract Background Angelica L. (family Apiaceae) is an economically important genus comprising ca. One hundred ten species. Angelica species are found on all continents of the Northern Hemisphere, and East Asia hosts the highest number of species. Morphological characters such as fruit anatomy, leaf morphology and subterranean structures of Angelica species show extreme diversity. Consequently, the taxonomic classification of Angelica species is complex and remains controversial, as the classifications proposed by previous studies based on morphological data and molecular data are highly discordant. In addition, the phylogenetic relationships of major clades in the Angelica group, particularly in the Angelica s. s. clade, remain unclear. Chloroplast (cp) genome sequences have been widely used in phylogenetic studies and for evaluating genetic diversity. Results In this study, we sequenced and assembled 28 complete cp genomes from 22 species, two varieties and two cultivars of Angelica. Combined with 36 available cp genomes in GenBank from representative clades of the subfamily Apioideae, the characteristics and evolutionary patterns of Angelica cp genomes were studied, and the phylogenetic relationships of Angelica species were resolved. The Angelica cp genomes had the typical quadripartite structure including a pair of inverted repeats (IRs: 5836–34,706 bp) separated by a large single-copy region (LSC: 76,657–103,161 bp) and a small single-copy region (SSC: 17,433–21,794 bp). Extensive expansion and contraction of the IR region were observed among cp genomes of Angelica species, and the pattern of the diversification of cp genomes showed high consistency with the phylogenetic placement of Angelica species. Species of Angelica were grouped into two major clades, with most species grouped in the Angelica group and A. omeiensis and A. sinensis grouped in the Sinodielsia with Ligusticum tenuissimum. Conclusions Our results further demonstrate the power of plastid phylogenomics in enhancing the phylogenetic reconstructions of complex genera and provide new insights into plastome evolution across Angelica L.


Zootaxa ◽  
2006 ◽  
Vol 1264 (1) ◽  
pp. 1 ◽  
Author(s):  
CATHERINE J. YOUNG

Molecular data from the 28S D2 ribosomal nuclear gene fragment were utilised to construct a phylogeny for the Australian Ennominae. Sequences were obtained from 68 geometrid and 5 outgroup species. Sequences from a smaller subset of 17 species also were analysed using the nuclear protein-coding gene EF-1a. Species were sampled from all major subfamilies of the Geometridae as no a priori assumptions could be made confidently about possible sister groups to the Australian Ennominae.The major findings from these analyses were as follows:(a) Drepanidae are a sister group to Geometridae;(b) Larentiinae are derived basally within the Geometridae; the Sterrhinae are the penultimate basally derived group;(c) Oenochrominae s. str. are closely related to the Geometrinae.(d) Ennominae are not monophyletic;(e) Tasmanian Archiearinae are misplaced in the Archiearinae and have close affinities to Australian Nacophorini (Ennominae);(f) Australian Nacophorini are not monophyletic.These results are at odds with traditionally held beliefs on the origins of Geometridae but are in broad agreement with and elaborate on the findings of Abraham et al. (2001). The implications of these findings in relation to key morphological characters are discussed using the proposed phylogenetic framework.


2020 ◽  
Vol 130 (3) ◽  
pp. 458-479
Author(s):  
Rodrigo Monjaraz-Ruedas ◽  
Oscar F Francke ◽  
Lorenzo Prendini

Abstract Until recently, the Nearctic short-tailed whipscorpion genus, StenochrusChamberlin, 1922, included 27 species distributed primarily in Mexico, the USA and Central America. Morphological disparity among its species, associated with their adaptation to diverse habitats, raised the question as to whether Stenochrus was monophyletic. The phylogenetic relationships among short-tailed whipscorpions have only recently begun to be explored, and the monophyly of Stenochrus had never been tested. The present contribution provides the first phylogeny of Stenochrus and related genera, based on 61 morphological characters and 2991 aligned DNA nucleotides from two nuclear and two mitochondrial gene markers, for 73 terminal taxa. Separate and simultaneous analyses of the morphological and molecular data sets were conducted with Bayesian Inference, Maximum Likelihood, and parsimony with equal and implied weighting. Terminals represented only by morphological data (‘orphans’) were included in some analyses for evaluation of their phylogenetic positions. As previously defined, Stenochrus sensuReddell & Cokendolpher (1991, 1995) was consistently polyphyletic and comprised eight monophyletic clades, justifying its reclassification into eight genera including Heteroschizomus Rowland, 1973, revalidated from synonymy with Stenochrus by Monjaraz-Ruedas et al. (2019). Rowland & Reddell’s (1980)mexicanus and pecki species groups were consistently paraphyletic. Orphans grouped with the most morphologically similar taxa.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6640
Author(s):  
Dominik Chłond ◽  
Natalia Sawka-Gądek ◽  
Dagmara Żyła

Among the 30 known genera within subfamily Peiratinae, only the genusSirtheneahas a cosmopolitan distribution. The results of our studies are the first comprehensive analysis concerning one of the representatives of mentioned subfamily based on joint phylogenetic analyses of molecular and morphological data as well as molecular dating. A total of 32 species were included into the dataset with all known species of the genusSirthenea. Material of over 400 dry specimens was examined for the morphological part of this study. The cosmopolitan distribution ofSirtheneaand the inaccessibility of specimens preserved in alcohol required the extraction of DNA from the dried skeletal muscles of specimens deposited in 24 entomological collections. The oldest specimens used for the successful extraction and sequencing were collected more than 120 years ago in India. We performed Bayesian Inference analyses of molecular and morphological data separately, as well as combined analysis. The molecular and morphological data obtained during our research verify the correlation of the divergence dates of all knownSirtheneaspecies. Results of the relaxed molecular clock analysis of the molecular data show that, the genusSirtheneastarted diverging in the Late Cretaceous into two clades, which subsequently began to branch off in the Paleocene. Our results of phylogenetic analyses suggest that thefossula spongiosaand its development could be one of the most important morphological characters in the evolution of the genus, most likely associated with the ecological niche inhabited bySirthenearepresentatives. Confirmation of the results obtained in our studies is the reconciliation of the evolutionary history ofSirtheneawith the biogeographical processes that have shaped current global distribution of the genus.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier Fernández-López ◽  
M. Teresa Telleria ◽  
Margarita Dueñas ◽  
Mara Laguna-Castro ◽  
Klaus Schliep ◽  
...  

AbstractThe use of different sources of evidence has been recommended in order to conduct species delimitation analyses to solve taxonomic issues. In this study, we use a maximum likelihood framework to combine morphological and molecular traits to study the case of Xylodon australis (Hymenochaetales, Basidiomycota) using the locate.yeti function from the phytools R package. Xylodon australis has been considered a single species distributed across Australia, New Zealand and Patagonia. Multi-locus phylogenetic analyses were conducted to unmask the actual diversity under X. australis as well as the kinship relations respect their relatives. To assess the taxonomic position of each clade, locate.yeti function was used to locate in a molecular phylogeny the X. australis type material for which no molecular data was available using morphological continuous traits. Two different species were distinguished under the X. australis name, one from Australia–New Zealand and other from Patagonia. In addition, a close relationship with Xylodon lenis, a species from the South East of Asia, was confirmed for the Patagonian clade. We discuss the implications of our results for the biogeographical history of this genus and we evaluate the potential of this method to be used with historical collections for which molecular data is not available.


Sign in / Sign up

Export Citation Format

Share Document