scholarly journals Spatial pattern evolution of Aedes aegypti breeding sites in an Argentinean city without a dengue vector control programme

2016 ◽  
Vol 11 (3) ◽  
Author(s):  
Manuel O. Espinosa ◽  
Francisco Polop ◽  
Camilo H. Rotela ◽  
Marcelo Abril ◽  
Carlos M. Scavuzzo

The main objective of this study was to obtain and analyse the space-time dynamics of <em>Aedes aegypti</em> breeding sites in Clorinda City, Formosa Province, Argentina coupled with landscape analysis using the maximum entropy approach in order to generate a dengue vector niche model. In urban areas, without vector control activities, 12 entomologic (larval) samplings were performed during three years (October 2011 to October 2014). The entomologic surveillance area represented 16,511 houses. Predictive models for <em>Aedes</em> distribution were developed using vector breeding abundance data, density analysis, clustering and geoprocessing techniques coupled with Earth observation satellite data. The spatial analysis showed a vector spatial distribution pattern with clusters of high density in the central region of Clorinda with a well-defined high-risk area in the western part of the city. It also showed a differential temporal behaviour among different areas, which could have implications for risk models and control strategies at the urban scale. The niche model obtained for <em>Ae. aegypti</em>, based on only one year of field data, showed that 85.8% of the distribution of breeding sites is explained by the percentage of water supply (48.2%), urban distribution (33.2%), and the percentage of urban coverage (4.4%). The consequences for the development of control strategies are discussed with reference to the results obtained using distribution maps based on environmental variables.

2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Guillermo Albrieu-Llinás ◽  
Manuel O. Espinosa ◽  
Agustín Quaglia ◽  
Marcelo Abril ◽  
Carlos Marcelo Scavuzzo

The identification of Aedes aegypti breeding hotspots in urban areas is crucial for the rational design of control strategies against this disease vector. Remote sensing and geographic information systems offer valuable tools for mapping habitat suitability of a given area. However, predicting species occurrences by means of probability distribution maps based on transversal entomological surveys has limited utility for local authorities. The aim of the present study was to carefully examine the temporal evolution of the number of houses infested with immature stages of Ae. aegypti in each individual neighbourhood and to explore the value of producing environmental clusters generated with information provided by remotely sensed variables to explain the observed differential temporal behaviour. Entomological surveys were conducted between 2011 and 2013 throughout a small town in Argentina registering the number of houses with containers harbouring immature stages of Ae. aegypti. A SPOT 5 satellite image was used to obtain land cover variables, which were subsequently submitted to k-means partitioning for grouping neighbourhoods into four environmental clusters. Finally, a generalized linear model was fitted showing that the number of houses found to be positive for Ae. aegypti was jointly affected by the interaction between environmental clusters and the year of sampling. Moreover, the number of positive houses in one of the clusters was 9.5 times higher (P<0.005, SE=0.37) in 2013 than in 2012, but we did not observe any other statistically significant increases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Camila Lorenz ◽  
Marcia C. Castro ◽  
Patricia M. P. Trindade ◽  
Maurício L. Nogueira ◽  
Mariana de Oliveira Lage ◽  
...  

AbstractIdentifying Aedes aegypti breeding hotspots in urban areas is crucial for the design of effective vector control strategies. Remote sensing techniques offer valuable tools for mapping habitat suitability. In this study, we evaluated the association between urban landscape, thermal features, and mosquito infestations. Entomological surveys were conducted between 2016 and 2019 in Vila Toninho, a neighborhood of São José do Rio Preto, São Paulo, Brazil, in which the numbers of adult female Ae. aegypti were recorded monthly and grouped by season for three years. We used data from 2016 to 2018 to build the model and data from summer of 2019 to validate it. WorldView-3 satellite images were used to extract land cover classes, and land surface temperature data were obtained using the Landsat-8 Thermal Infrared Sensor (TIRS). A multilevel negative binomial model was fitted to the data, which showed that the winter season has the greatest influence on decreases in mosquito abundance. Green areas and pavements were negatively associated, and a higher cover of asbestos roofs and exposed soil was positively associated with the presence of adult females. These features are related to socio-economic factors but also provide favorable breeding conditions for mosquitos. The application of remote sensing technologies has significant potential for optimizing vector control strategies, future mosquito suppression, and outbreak prediction.


2020 ◽  
Author(s):  
Thien-An Ha ◽  
Tomás M. León ◽  
Karina Lalangui ◽  
Patricio Ponce ◽  
John M. Marshall ◽  
...  

AbstractBackgroundVector-borne diseases are a major cause of disease burden in Guayaquil, Ecuador, especially arboviruses spread by Aedes aegypti mosquitoes. Understanding which household characteristics and risk factors lead to higher Ae. aegypti densities and consequent disease risk can help inform and optimize vector control programs.MethodsCross-sectional entomological surveys were conducted in Guayaquil between 2013 and 2016, covering household demographics, municipal services, potential breeding containers, presence of Ae. aegypti larvae and pupae, and history of using mosquito control methods. A zero-truncated negative binomial regression model was fitted to data for estimating the household pupal index. An additional model assessed the factors of the most productive breeding sites across all of the households.ResultsOf surveyed households, 610 satisfied inclusion criteria. The final household-level model found that collection of large solid items (e.g., furniture and tires) and rainfall the week of and 2 weeks before collection were negatively correlated with average pupae per container, while bed canopy use, unemployment, container water volume, and the interaction between large solid collection and rainfall 2 weeks before the sampling event were positively correlated. Selection of these variables across other top candidate models with ΔAICc < 1 was robust, with the strongest effects from large solid collection and bed canopy use. The final container-level model explaining the characteristics of breeding sites found that contaminated water is positively correlated with Ae. aegypti pupae counts while breeding sites composed of car parts, furniture, sewerage parts, vases, ceramic material, glass material, metal material, and plastic material were all negatively correlated.ConclusionHaving access to municipal services like bulky item pickup was effective at reducing mosquito proliferation in households. Association of bed canopy use with higher mosquito densities is unexpected, and may be a consequence of large local mosquito populations or due to limited use or effectiveness of other vector control methods. The impact of rainfall on mosquito density is multifaceted, as it may both create new habitat and “wash out” existing habitat. Providing services and social/technical interventions focused on monitoring and eliminating productive breeding sites is important for reducing aquatic-stage mosquito densities in households at risk for Ae. aegypti-transmitted diseases.


EcoHealth ◽  
2010 ◽  
Vol 7 (1) ◽  
pp. 78-90 ◽  
Author(s):  
H. Padmanabha ◽  
E. Soto ◽  
M. Mosquera ◽  
C. C. Lord ◽  
L. P. Lounibos

2015 ◽  
Vol 109 (2) ◽  
pp. 106-115 ◽  
Author(s):  
A. Che-Mendoza ◽  
G. Guillermo-May ◽  
J. Herrera-Bojorquez ◽  
M. Barrera-Perez ◽  
F. Dzul-Manzanilla ◽  
...  

Author(s):  
Jerica Isabel L. Reyes ◽  
Yasutsugu Suzuki ◽  
Thaddeus Carvajal ◽  
Maria Nilda M. Muñoz ◽  
Kozo Watanabe

Aedes aegypti is inherently susceptible to arboviruses. The geographical expansion of this vector host species has led to the persistence of Dengue, Zika, and Chikungunya human infections. These viruses take advantage of the mosquito’s cell to create an environment conducive for their growth. Arboviral infection triggers transcriptomic and protein dysregulation in Ae. aegypti and in effect, host antiviral mechanisms are compromised. Currently, there are no existing vaccines able to protect human hosts from these infections and thus, vector control strategies such as Wolbachia mass release program is regarded as a viable option. Considerable evidence demonstrates how the presence of Wolbachia interferes with arboviruses by decreasing host cytoskeletal proteins and lipids essential for arboviral infection. Also, Wolbachia strengthens host immunity, cellular regeneration and causes the expression of microRNAs which could potentially be involved in virus inhibition. However, variation in the magnitude of Wolbachia’s pathogen blocking effect that is not due to the endosymbiont’s density has been recently reported. Furthermore, the cellular mechanisms involved in this phenotype differs depending on Wolbachia strain and host species. This prompts the need to explore the cellular interactions between Ae. aegypti-arboviruses-Wolbachia and how different Wolbachia strains overall affect the mosquito’s cell. Understanding what happens at the cellular and molecular level will provide evidence on the sustainability of Wolbachia vector control.


Author(s):  
Jerica Isabel Reyes ◽  
Yasutsugu Suzuki ◽  
Thaddeus Carvajal ◽  
Maria Nilda Muñoz ◽  
Kozo Watanabe

Aedes aegypti is inherently susceptible to arboviruses. The geographical expansion of this vector host species has led to the persistence of Dengue, Zika and Chikungunya human infections. These viruses take advantage of the mosquito&rsquo;s cell to create an environment conducive for their growth. Arboviral infection triggers transcriptomic and protein dysregulation in Ae. aegypti and in effect, host antiviral mechanisms are compromised. Currently, there are no existing vaccines able to protect human hosts from these infections and thus, vector control strategies such as Wolbachia mass release program is regarded as a viable option. Considerable evidence demonstrates how the presence of Wolbachia interferes with arboviruses by decreasing cellular components vital for the pathogen and strengthening antiviral host responses. However, variation in the magnitude of Wolbachia&rsquo;s viral inhibition that is neither due to strain nor density has been observed. Furthermore, the cellular mechanisms involved in the endosymbiont&rsquo;s pathogen-blocking differs among hosts. This prompts the need to explore the cellular interactions between Ae. aegypti-arboviruses-Wolbachia and how these interactions overall affect the mosquito&rsquo;s cell. Understanding what happens at the cellular and molecular level will provide evidence on the sustainability of Wolbachia vector control.


2021 ◽  
Vol 15 (3) ◽  
pp. e0009205
Author(s):  
Rosilawati Rasli ◽  
Yoon Ling Cheong ◽  
M. Khairuddin Che Ibrahim ◽  
Siti Futri Farahininajua Fikri ◽  
Rusydi Najmuddin Norzali ◽  
...  

Background In Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance. Method and results The insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species. Conclusion The present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program.


2011 ◽  
Vol 106 (3) ◽  
pp. 346-352 ◽  
Author(s):  
Isabelle Dusfour ◽  
Véronique Thalmensy ◽  
Pascal Gaborit ◽  
Jean Issaly ◽  
Romuald Carinci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document