scholarly journals Studies on Sedum taxa found in Sicily (Italy) for Mediterranean extensive green roofs

2018 ◽  
pp. 148-154 ◽  
Author(s):  
Teresa Tuttolomondo ◽  
Giancarlo Fascella ◽  
Mario Licata ◽  
Rosario Schicchi ◽  
Maria Cristina Gennaro ◽  
...  

One type of green roof whose function is ecological and environmental rather than aesthetic is the extensive green roof. Many studies have shown that Sedum performs very well compared to other hardy species in substrates of less than 10 cm. It seems that Sedum species are able to survive in very thin substrates; they tolerate extreme temperatures and sudden variations in temperatures, high levels of solar radiation, strong winds, poor substrate fertility and extreme drought. In particular, this paper looks at the potential of a number of species from the Sicilian taxa of the genus Sedum (Crassulaceae), which are considered to be those xerophytes most suited for use in extensive green roof systems for Mediterranean areas. Each taxon was subject to in situ and ex situ observations to gain phenological and ecological data, information on its vegetative propagation capacity and its plant ground cover capacity. The results of this study have led to greater understanding of Sicilian pluriennal Sedum genus entities of potential use in green roof systems in the Mediterranean. The taxa respond particularly well to agamic propagation, showing characteristics suited to nursery production of green roof systems, with the exception of S. amplexicaule subsp. tenuifolium. Growth indices and plant development (ground cover) demonstrated the capacity of a number of Sedum taxa to form a uniform green mantle over time. S. sediforme and S. album subsp. album. showed interesting results, for because of their ability to colonize the substrate, and they could be fundamental in determining the plant structure of the green systems. However, there are also other plants, such as S. amplexicaule var. tenuifolium, and, to a lesser extent, S. dasyphyllum var. dasyphyllum and S. ochroleucum, which are able to contribute to floral diversification and lead to greater biodiversity in the system. These taxa could be used when creating associations of Sedum at lower percentages compared to the structuring species (≤20%).

2021 ◽  
Vol 13 (6) ◽  
pp. 3078
Author(s):  
Elena Giacomello ◽  
Jacopo Gaspari

The water storage capacity of a green roof generates several benefits for the building conterminous environment. The hydrologic performance is conventionally expressed by the runoff coefficient, according to international standards and guidelines. The runoff coefficient is a dimensionless number and defines the water retention performance over a long period. At the scale of single rain events, characterized by varying intensity and duration, the reaction of the green roof is scarcely investigated. The purpose of this study is to highlight how an extensive green roof—having a supposed minimum water performance, compared to an intensive one—responds to real and repetitive rain events, simulated in a rain chamber with controlled rain and runoff data. The experiment provides, through cumulative curve graphs, the behavior of the green roof sample during four rainy days. The simulated rain events are based on a statistical study (summarized in the paper) of 25 years of rain data for a specific location in North Italy characterized by an average rain/year of 1100 mm. The results prove the active response of the substrate, although thin and mineral, and quick draining, in terms of water retention and detention during intense rain events. The study raises questions about how to better express the water performance of green roofs.


2016 ◽  
Vol 62 (1-2) ◽  
pp. 44-57 ◽  
Author(s):  
Christine Thuring ◽  
Gary Grant

From its beginnings in Germany in the twentieth century, a thriving extensive green roof industry has become established in many countries in temperate climates. Based upon the success of the industry, and with an expectation that this technology will be adopted in other climates, this review of the ecological research of extensive green roofs aims to evaluate the application of this knowledge. The modern extensive green roof is the product of research in the 1970s by German green roof pioneers; the selection of suitable species from analogue habitats led to green roof vegetation dominated by drought tolerant taxa. The commercial success of extensive green roof systems can be attributed to engineering and horticultural research, to policy mechanisms in some places, and to a market that encourages innovation, and the origins in ecological design are now easily overlooked. Some of the work reviewed here, including the classification of spontaneous roof vegetation into plant communities, is not widely known due to its confinement to the German literature. By re-visiting the history of the extensive green roof and reviewing the ecological research that has contributed to our understanding of it, the intention is, for this paper, to inform those considering green roofs in other climatic regions, to apply an ecologically informed approach in using local knowledge for developing installations that are suited to the bioregion in which they occur. Finally the paper considers some future directions for research and practice.


HortScience ◽  
2012 ◽  
Vol 47 (12) ◽  
pp. 1775-1781 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

Vegetation success on green roofs in northern climates is challenged by extreme weather conditions, especially in winter, and is influenced by season of installation and substrate fertility. Appropriate fertilization with phosphorus (P) and potassium (K) can reduce winter injury for some plant species. The objectives of this study were to identify both the effect of P and K fertilizer rates on Sedum spp. survival over the first winter and the response of Sedum spp. growth to fertilizer rates when applied at installation. In a fall-installed extensive green roof system, survival, growth, and visual appearance of Sedum mats in non-fertilized plots (control) were compared with plots fertilized with 16–6–13 POLYON® Homogenous NPK plus Minors 3-4 month controlled-release fertilizer at 20.0 g nitrogen (N)/m2 either alone or with additional P to total 28.8, 54.4, or 80.0 g P/m2 or K to total 32.5, 51.6, or 70.6 g K/m2. Sedum mats were installed on 8 Oct. 2010 and plants in all plots survived the winter and the next year. During the 2011 growing season, vegetative coverage was not significantly different among any individual fertilized treatments; however, vegetative coverage data combined for all fertilized treatments was larger than the control. Fertilized treatments also showed larger plant height and biomass after one year, taller S. acre and S. sexangulare inflorescences, increased leaf greenness, and higher visual appearance rankings compared with the control. For individual Sedum species, S. album showed the greatest coverage in P-fertilized treatments, and effects on S. acre and S. sexangulare were treatment-dependent. Application of a controlled-release N–P–K fertilizer, without additional P or K, can be used to encourage vegetative coverage, plant growth, leaf greenness, inflorescence height, and visual appearance in fall-installed extensive Sedum green roof systems.


2015 ◽  
Vol 25 (6) ◽  
pp. 774-784 ◽  
Author(s):  
Nikolaos Ntoulas ◽  
Panayiotis A. Nektarios ◽  
Thomais-Evelina Kapsali ◽  
Maria-Pinelopi Kaltsidi ◽  
Liebao Han ◽  
...  

Several locally available materials were tested to create an optimized growth substrate for arid and semiarid Mediterranean extensive green roofs. The study involved a four-step screening procedure. At the first step, 10 different materials were tested including pumice (Pum), crushed tiles grade 1–2 mm (T1–2), 2–4 mm (T2–4), 5–8 mm (T5–8), 5–16 mm (T5–16), and 4–22 mm (T4–22); crushed bricks of either 2–4 mm (B2–4) or 2–8 mm (B2–8); a thermally treated clay (TC); and zeolite (Zeo). All materials were tested for their particle size distribution, pH, and electrical conductivity (EC). The results were compared for compliance with existing guidelines for extensive green roof construction. From the first step, the most promising materials were shown to include Pum, Zeo, T5–8, T5–16, and TC, which were then used at the second stage to develop mixtures between them. Tests at the second stage included particle size distribution and moisture potential curves. Pumice mixed with TC provided the best compliance with existing guidelines in relation to particle size distribution, and it significantly increased moisture content compared with the mixes of Pum with T5–8 and T5–16. As a result, from the second screening step, the best performing substrate was Pum mixed with TC and Zeo. The third stage involved the selection of the most appropriate organic amendment of the growing substrate. Three composts having different composition and sphagnum peat were analyzed for their chemical and physical characteristics. The composts were a) garden waste compost (GWC), b) olive (Olea europaea L.) mill waste compost (OMWC), and c) grape (Vitis vinifera L.) marc compost (GMC). It was found that the peat-amended substrate retained increased moisture content compared with the compost-amended substrates. The fourth and final stage involved the evaluation of the environmental impact of the final mix with the four different organic amendments based on their first flush nitrate nitrogen (NO3−-N) leaching potential. It was found that GWC and OMWC exhibited increased NO3−-N leaching that initially reached 160 and 92 mg·L−1 of NO3−-N for OMWC and GWC, respectively. By contrast, peat and GMC exhibited minimal NO3−-N leaching that was slightly above the maximum contaminant level of 10 mg·L−1 of NO3−-N (17.3 and 14.6 mg·L−1 of NO3−N for peat and GMC, respectively). The latter was very brief and lasted only for the first 100 and 50 mL of effluent volume for peat and GMC, respectively.


2021 ◽  
Vol 19 (17) ◽  
Author(s):  
Shazmin Shareena Ab. Azis ◽  
Muhammad Najib Mohamed Razali ◽  
Nurul Hana Adi Maimun ◽  
Nurul Syakima Mohd Yusoff ◽  
Mohd Shahril Abdul Rahman ◽  
...  

Modernization has created new impervious urban landscape contributed to major catastrophe. Urban drainage system incapable to convey the excess rainwater resulting in flash flood due to heavy rainfall. The combination of green roof on building have tremendously proved to control stormwater efficiently. This study is conducted to review the efficiency of intensive and extensive green roof in reducing urban storm water runoff. This study identifies characteristic of green roof that contributes to lessening urban storm water runoff. Data was collected based on rigorous literature reviews and analyzed using meta-analysis. Overall, findings revealed intensive green roof performed better in reducing storm water runoff compared to extensive green roof. Green roof performance increases as the depth of substrate increased. Origanum and Sedum plants are both highly effective for intensive and extensive green roofs. The performance of green roof reduces as degree of roof slope increased.


2011 ◽  
Vol 11 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Vivian W. Y. Tam ◽  
Xiaoling Zhang ◽  
Winnie Lee ◽  
LY Shen

Developed cities such as Hong Kong are usually densely populated. Since the land is limited, high-rise buildings are constructed. When the building height becomes higher, air flow is reduced and heat is trapped among high-rise buildings. Air temperature will be greatly increased and air pollution becomes a serious problem. This creates a walled building problem. To reduce air temperature caused by the wall-effects, various methods have been developed in the previous studies. One typical method is the use of green roof systems. The application of extensive green roofs on the existing building rooftops has been recommended in Hong Kong since 2001. The advantage of this practice is that no additional floor area is required and it can also improve urban greenery. Although a green roof system has been introduced and adopted in Hong Kong since 2001, the emphasis is mainly given to the application of intensive green roofs for podium garden instead of extensive green roofs. It is considered valuable and necessary of the extensive green roofs for the buildings. This paper investigates the current practice of using extensive green roofs in Hong Kong. The constraints in applying extensive green roofs are investigated, which leads to studying the solutions for mitigating these constraints and improving the future development of the implementation.


2017 ◽  
Vol 77 (3) ◽  
pp. 670-681 ◽  
Author(s):  
Jiankang Guo ◽  
Yanting Zhang ◽  
Shengquan Che

Abstract Current research has validated the purification of rainwater by a substrate layer of green roofs to some extent, though the effects of the substrate layer on rainwater purification have not been adequately quantified. The present study set up nine extensive green roof experiment combinations based on the current conditions of precipitation characteristics observed in Shanghai, China. Different rain with pollutants were simulated, and the orthogonal design L9 (33) test was conducted to measure purification performance. The purification influences of the extensive green roof substrate layer were quantitatively analyzed in Shanghai to optimize the thickness, proportion of substrate, and sodium polyacrylate content. The experimental outcomes resulted in ammonium nitrogen (NH4+-N), lead (Pb), and zinc (Zn) removal of up to 93.87%, 98.81%, and 94.55% in the artificial rainfall, respectively, and NH4+-N, Pb, and Zn event mean concentration (EMC) was depressed to 0.263 mg/L, 0.002 mg/L and 0.018 mg/L, respectively, which were all well below the pollutant concentrations of artificial rainfall. With reference to the rainfall chemical characteristics of Shanghai, a combination of a 200 mm thickness, proportions of 1:1:2 of Loam: Perlite: Cocopeat and 2 g/L sodium polyacrylate content was suggested for the design of an extensive green roof substrate to purify NH4+-N, Pb and Zn.


2013 ◽  
Vol 6 (6) ◽  
pp. 1941-1960 ◽  
Author(s):  
C. S. de Munck ◽  
A. Lemonsu ◽  
R. Bouzouidja ◽  
V. Masson ◽  
R. Claverie

Abstract. The need to prepare cities for climate change adaptation requests the urban modeller community to implement sustainable adaptation strategies within their models to be tested against specific city morphologies and scenarios. Greening city roofs is part of these strategies. In this context, the GREENROOF module for TEB (town energy balance) has been developed to model the interactions between buildings and green roof systems at the scale of the city. This module, which combines the ISBA model (Interaction between Soil Biosphere and Atmosphere) and TEB, allows for one to describe an extensive green roof composed of four functional layers (vegetation – grasses or sedums; substrate; retention/drainage layers; and artificial roof layers) and to model vegetation-atmosphere fluxes of heat, water and momentum, as well as the hydrological fluxes throughout the substrate and the drainage layers, and the thermal fluxes throughout the natural and artificial layers of the green roof. TEB-GREENROOF (SURFEX v7.3) should therefore be able to represent the impact of climate forcings on the functioning of green roof vegetation and, conversely, the influence of the green roof on the local climate. An evaluation of GREENROOF is performed for a case study located in Nancy (France) which consists of an instrumented extensive green roof with sedums and substrate and drainage layers that are typical of this kind of construction. After calibration of the drainage layer hydrological characteristics, model results show good dynamics for the substrate water content and the drainage at the green roof base, with nevertheless a tendency to underestimate the water content and overestimate the drainage. This does not impact too much the green roof temperatures, which present a good agreement with observations. Nonetheless GREENROOF tends to overestimate the soil temperatures and their amplitudes, but this effect is less important in the drainage layer. These results are encouraging with regard to modelling the impact of green roofs on thermal indoor comfort and energy consumption at the scale of cities, for which GREENROOF will be running with the building energy version of TEB – TEB-BEM. Moreover, with the green roof studied for GREENROOF evaluation being a type of extensive green roof widespread in cities, the type of hydrological characteristics highlighted for the case study will be used as the standard configuration to model extensive green roof impacts at the scale of cities.


HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 518-522 ◽  
Author(s):  
Jennifer M. Bousselot ◽  
James E. Klett ◽  
Ronda D. Koski

Success of extensive green roof vegetation depends primarily on associated plant species' ability to survive the low moisture content of the substrate. As a result of the well-drained nature of the substrate, plants adaptable to dry, porous soils are primarily used in extensive green roof applications. Although Sedum species have dominated the plant palette for extensive green roofs, there is growing interest in expanding the plant list for extensive green roof systems. To effectively select suitable plants, species need to be evaluated in terms of their response to gradual and prolonged dry down of the substrate. A study to determine the relative rates of dry down for 15 species was conducted in greenhouse trials. During dry downs that extended over 5 months, the substrate of succulent and herbaceous species dried down at different rates. The change in moisture content of the substrate was not consistent among succulent and herbaceous plant species during the initial 18 d of dry down. Despite differences in rate of dry down, the succulent species, as a group, maintained viable foliage for over five times longer than the herbaceous species. The revival rates of the succulent species were nearly double those of the herbaceous species. Therefore, not only are succulent species more likely to survive during periods of drought, but these species are more likely to resume growth soon after water is again made available.


Sign in / Sign up

Export Citation Format

Share Document