scholarly journals Soils and the European Green Deal

2020 ◽  
Vol 15 (4) ◽  
pp. 262-266
Author(s):  
Luca Montanarella

Soils play a central role in achieving sustainable development. The new European Green Deal is addressing all policy areas relevant to sustainable soil management: climate change, biodiversity, agriculture and desertification, including sustainable water management, are necessarily at the core of the European policies. Consistently addressing soil protection across these different policy areas will be the major challenge in front of us in the next years.   Highlights - Soils play a central role in achieving the goals of the European Green Deal. - Sustainable soil management is a cross-cutting issue relevant to several policy areas addressed by the European Green Deal, such as climate change, biodiversity, agriculture, food safety. - Human health and wellbeing are closely connected with soil health and sustainable soil management.

2021 ◽  

The protection of soil and the sustainable management of soils is a precondition for sustainable development, food security and the survival of humankind. Africa is the continent with the least land degradation. Yet, the pressure on soils is already enormous and continuously increasing due to a range of factors, including poverty, over-exploitation, population growth and climate change. Drivers of unsustainable soil management include overstocking, overgrazing, water erosion, landslides, and over-application of agro-chemicals. In light of this, the underlying legal, societal and political conditions have been comparatively analysed in “African Soil Protection Law”. Distinct country studies from Kenya, Cameroon and Zambia serve to comparatively expose the serious impediments of soil in Africa. While mapping out options for model legislation for improved sustainable soil management in Africa, the publication addresses intertwined, interdisciplinary and complex questions pertaining to soils, which may also be of comparative interest to other continents and jurisdictions.


2021 ◽  
Author(s):  
Selina Meier ◽  
Randy Munoz ◽  
Christian Huggel

<p>Water scarcity is increasingly becoming a problem in many regions of the world. On the one hand, this can be attributed to changes in precipitation conditions due to climate change. On the other hand, this is also due to population growth and changes in consumer behaviour. In this study, an analysis is carried out for the highly glaciated Vilcanota River catchment (9808 km<sup>2</sup> – 1.2% glacier area) in the Cusco region (Peru). Possible climatic and socioeconomic scenarios up to 2050 were developed including the interests from different water sectors, i.e. agriculture, domestic and energy.</p><p>The analysis consists of the hydrological simulation at a monthly time step from September 2043 to August 2050 using a simple glacio-hydrological model. For historic conditions (1990 to 2006) a combination of gridded data (PISCO precipitation) and weather stations was used. Future scenario simulations were based on three different climate models for both RCP 2.6 and 8.5. Different glacier outlines were used to simulate changes in glacier surface through the time for both historic (from satellite data) and future (from existing literature) scenarios. Furthermore, future water demand simulations were based on the SSP1 and SSP3 scenarios.</p><p>Results from all scenarios suggest an average monthly runoff of about 130 m<sup>3</sup>/s for the Vilcanota catchment between 2043 and 2050. This represents a change of about +5% compared to the historical monthly runoff of about 123 m<sup>3</sup>/s. The reason for the increase in runoff is related to the precipitation data from the selected climate models. However, an average monthly deficit of up to 50 m<sup>3</sup>/s was estimated between April and November with a peak in September. The seasonal deficit is related to the seasonal change in precipitation, while the water demand seems to have a less important influence.</p><p>Due to the great uncertainty of the modelling and changes in the socioeconomic situation, the data should be continuously updated. In order to construct a locally sustainable water management system, the modelling needs to be further downscaled to the different subcatchments in the Vilcanota catchment. To address the projected water deficit, a new dam could partially compensate for the decreasing storage capacity of the melting glaciers. However, the construction of the dam could meet resistance from the local population if they cannot be promised and communicated multiple uses of the new dam. Sustainable water management requires the cooperation of all stakeholders and all stakeholders should be able to benefit from it so that they will support future projects.</p>


2021 ◽  
Author(s):  
Deepika Pandey

The flow of water in rivers is of paramount importance to maintain supply of food and energy requirements to a great extent. The minimum flow in perennial rivers is subjected to groundwater availability, it is further replenished by the water added through precipitation. Climate change not only increases the melting of glaciers and sea level rise, but also influences the surface water flow and quality. As agriculture is directly affected by changing precipitation pattern, the reduction in water resources and untimely addition of water, both act havoc to the food production process. This interconnection makes agriculture even more vulnerable to the scenarios of global warming and climate change. Studies on food-energy-water nexus has opened new avenues of research in sustainable water management. The role of sustainable flow of water in rivers is highlighted which needs to be understood in era of climate change.


2021 ◽  
Vol 13 (20) ◽  
pp. 11260
Author(s):  
Bader Alhafi Alotaibi ◽  
Hazem S. Kassem

Promoting sustainable water management (SWM) practices among farmers is essential in order to ensure water sustainability. This study aimed to analyze patterns in the adoption of SWM practices by farmers at the farm level, and how their awareness regarding the causes of agricultural water pollution influence SWM adoption. Face-to-face interviews were conducted to collect field data using structured questionnaires from 129 farmers in the Riyadh region, Saudi Arabia. The results indicate that 38.8% of farmers had a high awareness of the causes of water pollution from agriculture. Approximately half of the farmers exhibited a high rate of adoption of SWM practices, most of whom adopted water quality and soil management practices. The findings reveal a positive association (0.37, p < 0.01) between SWM adoption and awareness regarding water pollution caused by agriculture, whereby the farmers with more awareness regarding the causes of water pollution from agriculture showed a higher level of adoption for 55% of the SWM practices. Multiple regression analysis revealed that the awareness levels regarding the causes of agricultural water pollution and cultivated crops significantly influenced the adoption of SWM by farmers. The findings and implications provide an understanding of the SWM practices of farmers, and offers insights for policymakers aiming to reformulate strategies and policies combatting water scarcity in Saudi Arabia.


2010 ◽  
pp. 245-250
Author(s):  
János Lazányi

In the Hungarian Rural Development Programme (RDP) climate change adaptation is addressed through the measures in Axis 1, 2, 3 and 4. Under Axis 1 farmers can receive support for farm modernisation that will help them adapt to climate change. The processing industry will also be able to use the available resources for capital expenditure on buildings and new equipment. Axis 2 and especially the soil and water package within the agrienvironmentalmeasure aim to support production methods, which protect soil quality and will help adaptation to climate change. Measures of Axis 3, such as basic services for the economy and rural population, village renewal and development will provide local communities the opportunity to identify actions that can be undertaken to deal with the effects of climate change. On the other hand, the extension of forest resources contributes to climate change mitigation and enhances carbon sequestration. New methods have been elaborated to the sustainable regional water management, irrigation, water regulation, defence against internal water, and soil protection established. Water management contributes to the balance of water quantity on one side, but also to mitigating the climate change on the other.


2020 ◽  
Vol 15 (4) ◽  
pp. 293-298
Author(s):  
Filiberto Altobelli ◽  
Ronald Vargas ◽  
Giuseppe Corti ◽  
Carmelo Dazzi ◽  
Luca Montanarella ◽  
...  

The UN Sustainable Development Goals (SDGs) identify the need to restore degraded soils in order to improve productivity and the provision of ecosystem services. The aim is to support food production, store and supply clean water, conserve biodiversity, sequester carbon, and improve soil resilience in a context of climate change. Within this framework, in order to achieve the SDGs and to correct land management in the long-term, soil management is considered mandatory. The reduction of land degradation should be based on various sustainable soil management practices that improve and maintain soil organic matter levels, increase water infiltration, and improve soil water management. This technical review - a policy paper - summarizes the sustainable and territorial impact of soil degradation, including soil water erosion, from the global level to the European and National levels. Furthermore, with the aim of sharing ongoing soil and water management actions, instruments, and initiatives, we provide information on soil and water conservation activities and prospects in Italy.


Sign in / Sign up

Export Citation Format

Share Document