scholarly journals Computational fluid dynamic simulation of a pulse-width modulated spray nozzle

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Zachary Chapman ◽  
Jeffrey Doom

Computational fluid dynamics (CFD) is a useful tool used by engineers in many industries to study fluid flow. A relatively new industry to adopt the use of CFD is the agricultural industry. A spray nozzle commonly used in agricultural spraying, the Teejet 110-degree nozzle (TeeJet Technologies, 2020), was simulated. A method was developed to pulse the spray. A user-defined function was used to define the velocity at the inlet of the nozzle to pulse the spray. The domain was then extended to allow the examination of a slice 20 inches below the nozzle. The simulation results were compared to experimental results collected from a sprayer testbed. The effect of frequency was then investigated by changing the frequency of the pulses. Results from these studies show that a userdefined function can be used to pulse the spray. CFD can be used to model spray nozzles, but the validity of the results are strongly related to the computational resources available, and increasing the frequency of the pulses results in a higher concentrated spray toward the center of the spray plume. The simulations were carried out using a commercial code (CD-Adapco, 2019).

2020 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Ciro Caliendo ◽  
Gianluca Genovese ◽  
Isidoro Russo

We have developed an appropriate Computational Fluid Dynamics (CFD) model for assessing the exposure to risk of tunnel users during their evacuation process in the event of fire. The effects on escaping users, which can be caused by fire from different types of vehicles located in various longitudinal positions within a one-way tunnel with natural ventilation only and length less than 1 km are shown. Simulated fires, in terms of maximum Heat Release Rate (HRR) are: 8, 30, 50, and 100 MW for two cars, a bus, and two types of Heavy Goods Vehicles (HGVs), respectively. With reference to environmental conditions (i.e., temperatures, radiant heat fluxes, visibility distances, and CO and CO2 concentrations) along the evacuation path, the results prove that these are always within the limits acceptable for user safety. The exposure to toxic gases and heat also confirms that the tunnel users can safely evacuate. The evacuation time was found to be higher when fire was related to the bus, which is due to a major pre-movement time required for leaving the vehicle. The findings show that mechanical ventilation is not necessary in the case of the tunnel investigated. It is to be emphasized that our modeling might represent a reference in investigating the effects of natural ventilation in tunnels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Gozawa ◽  
Yoshihiro Takamura ◽  
Tomoe Aoki ◽  
Kentaro Iwasaki ◽  
Masaru Inatani

AbstractWe investigated the change in the retinal gas cover rates due to intraocular gas volume and positions using computational eye models and demonstrated the appropriate position after pars plana vitrectomy (PPV) with gas tamponade for rhegmatogenous retinal detachments (RRDs). Computational fluid dynamic (CFD) software was used to calculate the retinal wall wettability of a computational pseudophakic eye models using fluid analysis. The model utilized different gas volumes from 10 to 90%, in increments of 10% to the vitreous cavity in the supine, sitting, lateral, prone with closed eyes, and prone positions. Then, the gas cover rates of the retina were measured in each quadrant. When breaks are limited to the inferior retina anterior to the equator or multiple breaks are observed in two or more quadrants anterior to the equator, supine position maintained 100% gas cover rates in all breaks for the longest duration compared with other positions. When breaks are limited to either superior, nasal, or temporal retina, sitting, lower temporal, and lower nasal position were maintained at 100% gas cover rates for the longest duration, respectively. Our results may contribute to better surgical outcomes of RRDs and a reduction in the duration of the postoperative prone position.


2021 ◽  
Vol 13 (2) ◽  
pp. 494
Author(s):  
Antonio Algar ◽  
Javier Freire ◽  
Robert Castilla ◽  
Esteban Codina

The internal cushioning systems of hydraulic linear actuators avoid mechanical shocks at the end of their stroke. The design where the piston with perimeter grooves regulates the flow by standing in front of the outlet port has been investigated. First, a bond graph dynamic model has been developed, including the flow throughout the internal cushion design, characterized in detail by computational fluid-dynamic simulation. Following this, the radial movement of the piston and the fluid-dynamic coefficients, experimentally validated, are integrated into the dynamic model. The registered radial movement is in coherence with the significant drag force estimated in the CFD simulation, generated by the flow through the grooves, where the laminar flow regime predominates. Ultimately, the model aims to predict the behavior of the cushioning during the movement of the arm of an excavator. The analytical model developed predicts the performance of the cushioning system, in coherence with empirical results. There is an optimal behavior, highly influenced by the mechanical stress conditions of the system, subject to a compromise between an increasing section of the grooves and an optimization of the radial gap.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


2014 ◽  
Vol 493 ◽  
pp. 80-85 ◽  
Author(s):  
C.L Siow ◽  
Jaswar ◽  
Efi Afrizal

Computational Fluid Dynamics (CFD) software is often used to study fluid flow and structures motion in fluids. The CFD normally requires large size of arrays and computer memory and then caused long execution time. However, Innovation of computer hardware such as multi-cores processor provides an alternative solution to improve this programming performance. This paper discussed loop parallelize multi-cores processor for optimization of sequential looping CFD code. This loop parallelize CFD was achieved by applying multi-tasking or multi-threading code into the original CFD code which was developed by one of the authors. The CFD code was developed based on Reynolds Average Navier-Stokes (RANS) method. The new CFD code program was developed using Microsoft Visual Basic (VB) programming language. In the early stage, the whole CFD code was constructed in a sequential flow before it is modified to parallel flow by using VBs multi-threading library. In the comparison, fluid flow around the hull of round-shaped FPSO was selected to compare the performance of both the programming codes. Besides, executed results of this self-developed code such as pressure distribution around the hull were also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document