scholarly journals QUANTUM FIELD THEORY FROM FIRST PRINCIPLES

Author(s):  
Paolo Perinotti

The mathematical description of quantum systems univocally identies their nature. In other words we treat a system as quantum if we describe its behaviour adopting Hilbert spaces and structures thereof, as prescribed by the postulates of quantum theory. The choice of using quantum systems as the elementary systems of physics can be justied in terms of informational principles, thanks to results of the last decade. Such results come as the conclusion of a research program that lasted almost one century, with the aim of reformulating quantum theory in terms of operational principles. This achievement now poses a new challenge, that we face here. If the systems of quantum theory are thought of as elementary information carriers in the rst place, rather than elementary constituents of matter, and their connections are logical connections within a given algorithm, rather than space-time relations, then we need to nd the origin of mechanical concepts—that characterise quantum mechanics as a theory of physical systems. To this end,we will illustrate howphysical laws can be viewed as algorithms for the update of memory registers that make a physical system. Imposing the characteristic properties of physical laws to such an algorithm, i.e. homogeneity, reversibility and isotropy, we will show that the physical laws thus selected are particular algorithms known as cellular automata. Further assumptions regarding maximal simplicity of the algorithm lead to two cellular automata only, that in a suitable regime can be described by Weyl’s dierential equations, lying at the basis of the dynamics of relativistic quantum elds. We will nally discuss how the same cellular automaton can give rise to both Fermionic eld dynamics and to Maxwell’s equations, that rule the dynamics of the electromagnetic eld. We will conclude reviewing the discussion of the relativity principle, that must be suitably adapted to the scenario where space-time is not an elementary notion, through the denition of a change of inertial reference frame, and whose formulation leads to the recovery of the symmetry of Minkowski space-time, identied with Poincar´e’s group. Space-time thus emerges as one of the manifestations of physical laws, rather than the background where they occur, and its features are determined by the dynamics of systems, necessarily equipped with dierential equations that express it. In brief, there is no space-time unless an evolution rule requires it.

2007 ◽  
Vol 22 (10) ◽  
pp. 1797-1818 ◽  
Author(s):  
VISHNU JEJJALA ◽  
DJORDJE MINIC

The cosmological constant problem is turned around to argue for a new foundational physics postulate underlying a consistent quantum theory of gravity and matter, such as string theory. This postulate is a quantum equivalence principle which demands a consistent gauging of the geometric structure of canonical quantum theory. We argue that string theory can be formulated to accommodate such a principle, and that in such a theory the observed cosmological constant is a fluctuation about a zero value. This fluctuation arises from an uncertainty relation involving the cosmological constant and the effective volume of space–time. The measured, small vacuum energy is dynamically tied to the large "size" of the universe, thus violating naive decoupling between small and large scales. The numerical value is related to the scale of cosmological supersymmetry breaking, supersymmetry being needed for a nonperturbative stability of local Minkowski space–time regions in the classical regime.


2019 ◽  
Vol 74 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Tejinder P. Singh

AbstractWe propose that space-time results from collapse of the wave function of macroscopic objects, in quantum dynamics. We first argue that there ought to exist a formulation of quantum theory which does not refer to classical time. We then propose such a formulation by invoking an operator Minkowski space-time on the Hilbert space. We suggest relativistic spontaneous localisation as the mechanism for recovering classical space-time from the underlying theory. Quantum interference in time could be one possible signature for operator time, and in fact may have been already observed in the laboratory, on attosecond time scales. A possible prediction of our work seems to be that interference in time will not be seen for ‘time slit’ separations significantly larger than 100 attosecond, if the ideas of operator time and relativistic spontaneous localisation are correct.


2014 ◽  
Vol 11 (10) ◽  
pp. 1450086 ◽  
Author(s):  
Horace W. Crater ◽  
Luca Lusanna

After a review of the existing theory of non-inertial frames and mathematical observers in Minkowski space-time we give the explicit expression of a family of such frames obtained from the inertial ones by means of point-dependent Lorentz transformations as suggested by the locality principle. These non-inertial frames have non-Euclidean 3-spaces and contain the differentially rotating ones in Euclidean 3-spaces as a subcase. Then we discuss how to replace mathematical accelerated observers with dynamical ones (their world-lines belong to interacting particles in an isolated system) and how to define Unruh–DeWitt detectors without using mathematical Rindler uniformly accelerated observers. Also some comments are done on the transition from relativistic classical mechanics to relativistic quantum mechanics in non-inertial frames.


2016 ◽  
Vol 31 (27) ◽  
pp. 1650152 ◽  
Author(s):  
Alex S. Arvanitakis ◽  
Luca Mezincescu ◽  
Paul K. Townsend

The action for a massless particle in 4D Minkowski space–time has a worldline-time reversing symmetry corresponding to CPT invariance of the quantum theory. The analogous symmetry of the [Formula: see text]-extended superparticle is shown to be anomalous when [Formula: see text] is odd; in the supertwistor formalism this is because a CPT-violating worldline-Chern–Simons term is needed to preserve the chiral [Formula: see text] gauge invariance. This accords with the fact that no massless [Formula: see text] super-Poincaré irrep is CPT-self-conjugate. There is a CPT self-conjugate supermultiplet when [Formula: see text] is even, but it has [Formula: see text] states when [Formula: see text] is odd (e.g. the [Formula: see text] hypermultiplet) in contrast to just [Formula: see text] when [Formula: see text] is even (e.g. the [Formula: see text] Maxwell supermultiplet). This is shown to follow from a Kramers degeneracy of the superparticle state space when [Formula: see text] is odd.


1997 ◽  
Vol 50 (5) ◽  
pp. 851 ◽  
Author(s):  
David Tilbrook

We examine space-times which are described by a metric of the form ds2 = V2(X)dT2 - U2 (X)dX2 - dY2 - dZ2 in which V =V (X) and U = U(X) are continuous functions of X only and which admit diffeomorphisms into Minkowski space-time. It is shown that such space-times are associated with rigidly accelerating frames of reference by appeal to the notion of a fundamental observer. The condition for the existence of the diffeomorphism is derived from first principles and some special cases of coordinates are discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
K. Urbanowski

We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.


2016 ◽  
Vol 46 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Emilija Nešović ◽  
Milica Grbović

Sign in / Sign up

Export Citation Format

Share Document