scholarly journals Acute Whole-Body Cooling for Exercise-Induced Hyperthermia: A Systematic Review

2009 ◽  
Vol 44 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Brendon P. McDermott ◽  
Douglas J. Casa ◽  
Matthew S. Ganio ◽  
Rebecca M. Lopez ◽  
Susan W. Yeargin ◽  
...  

Abstract Objective: To assess existing original research addressing the efficiency of whole-body cooling modalities in the treatment of exertional hyperthermia. Data Sources: During April 2007, we searched MEDLINE, EMBASE, Scopus, SportDiscus, CINAHL, and Cochrane Reviews databases as well as ProQuest for theses and dissertations to identify research studies evaluating whole-body cooling treatments without limits. Key words were cooling, cryotherapy, water immersion, cold-water immersion, ice-water immersion, icing, fanning, bath, baths, cooling modality, heat illness, heat illnesses, exertional heatstroke, exertional heat stroke, heat exhaustion, hyperthermia, hyperthermic, hyperpyrexia, exercise, exertion, running, football, military, runners, marathoner, physical activity, marathoning, soccer, and tennis. Data Synthesis: Two independent reviewers graded each study on the Physiotherapy Evidence Database (PEDro) scale. Seven of 89 research articles met all inclusion criteria and a minimum score of 4 out of 10 on the PEDro scale. Conclusions: After an extensive and critical review of the available research on whole-body cooling for the treatment of exertional hyperthermia, we concluded that ice-water immersion provides the most efficient cooling. Further research comparing whole-body cooling modalities is needed to identify other acceptable means. When ice-water immersion is not possible, continual dousing with water combined with fanning the patient is an alternative method until more advanced cooling means can be used. Until future investigators identify other acceptable whole-body cooling modalities for exercise-induced hyperthermia, ice-water immersion and cold-water immersion are the methods proven to have the fastest cooling rates.

2006 ◽  
Vol 100 (4) ◽  
pp. 1377-1384 ◽  
Author(s):  
Paul C. Castle ◽  
Adam L. Macdonald ◽  
Andrew Philp ◽  
Anthony Webborn ◽  
Peter W. Watt ◽  
...  

We used three techniques of precooling to test the hypothesis that heat strain would be alleviated, muscle temperature (Tmu) would be reduced, and as a result there would be delayed decrements in peak power output (PPO) during exercise in hot, humid conditions. Twelve male team-sport players completed four cycling intermittent sprint protocols (CISP). Each CISP consisted of twenty 2-min periods, each including 10 s of passive rest, 5 s of maximal sprint against a resistance of 7.5% body mass, and 105 s of active recovery. The CISP, preceded by 20 min of no cooling (Control), precooling via an ice vest (Vest), cold water immersion (Water), and ice packs covering the upper legs (Packs), was performed in hot, humid conditions (mean ± SE; 33.7 ± 0.3°C, 51.6 ± 2.2% relative humidity) in a randomized order. The rate of heat strain increase during the CISP was faster in Control than Water and Packs ( P < 0.01), but it was similar to Vest. Packs and Water blunted the rise of Tmu until minute 16 and for the duration of the CISP (40 min), respectively ( P < 0.01). Reductions in PPO occurred from minute 32 onward in Control, and an increase in PPO by ∼4% due to Packs was observed (main effect; P < 0.05). The method of precooling determined the extent to which heat strain was reduced during intermittent sprint cycling, with leg precooling offering the greater ergogenic effect on PPO than either upper body or whole body cooling.


2012 ◽  
Vol 47 (6) ◽  
pp. 655-663 ◽  
Author(s):  
Elaine C. Lee ◽  
Greig Watson ◽  
Douglas Casa ◽  
Lawrence E. Armstrong ◽  
William Kraemer ◽  
...  

Context Cold-water immersion is the criterion standard for treatment of exertional heat illness. Cryotherapy and water immersion also have been explored as ergogenic or recovery aids. The kinetics of inflammatory markers, such as interleukin-6 (IL-6), during cold-water immersion have not been characterized. Objective To characterize serum IL-6 responses to water immersion at 2 temperatures and, therefore, to initiate further research into the multidimensional benefits of immersion and the evidence-based selection of specific, optimal immersion conditions by athletic trainers. Design Controlled laboratory study. Setting Human performance laboratory Patients or Other Participants Eight college-aged men (age = 22 ± 3 years, height = 1.76 ± 0.08 m, mass = 77.14 ± 9.77 kg, body fat = 10% ± 3%, and maximal oxygen consumption = 50.48 ± 4.75 mL·kg−1·min−1). Main Outcome Measures Participants were assigned randomly to receive either cold (11.70°C ± 2.02°C, n = 4) or warm (23.50°C ± 1.00°C, n = 4) water-bath conditions after exercise in the heat (temperature = 37°C, relative humidity = 52%) for 90 minutes or until volitional cessation. Results Whole-body cooling rates were greater in the cold water-bath condition for the first 6 minutes of water immersion, but during the 90-minute, postexercise recovery, participants in the warm and cold water-bath conditions experienced similar overall whole-body cooling. Heart rate responses were similar for both groups. Participants in the cold water-bath condition experienced an overall slight increase (30.54% ± 77.37%) in IL-6 concentration, and participants in the warm water-bath condition experienced an overall decrease (−69.76% ± 15.23%). Conclusions We have provided seed evidence that cold-water immersion is related to subtle IL-6 increases from postexercise values and that warmer water-bath temperatures might dampen this increase. Further research will elucidate any anti-inflammatory benefit associated with water-immersion treatment and possible multidimensional uses of cooling therapies.


2013 ◽  
Vol 8 (3) ◽  
pp. 227-242 ◽  
Author(s):  
Wigand Poppendieck ◽  
Oliver Faude ◽  
Melissa Wegmann ◽  
Tim Meyer

Purpose:Cooling after exercise has been investigated as a method to improve recovery during intensive training or competition periods. As many studies have included untrained subjects, the transfer of those results to trained athletes is questionable.Methods:Therefore, the authors conducted a literature search and located 21 peer-reviewed randomized controlled trials addressing the effects of cooling on performance recovery in trained athletes.Results:For all studies, the effect of cooling on performance was determined and effect sizes (Hedges’ g) were calculated. Regarding performance measurement, the largest average effect size was found for sprint performance (2.6%, g = 0.69), while for endurance parameters (2.6%, g = 0.19), jump (3.0%, g = 0.15), and strength (1.8%, g = 0.10), effect sizes were smaller. The effects were most pronounced when performance was evaluated 96 h after exercise (4.3%, g = 1.03). Regarding the exercise used to induce fatigue, effects after endurance training (2.4%, g = 0.35) were larger than after strength-based exercise (2.4%, g = 0.11). Cold-water immersion (2.9%, g = 0.34) and cryogenic chambers (3.8%, g = 0.25) seem to be more beneficial with respect to performance than cooling packs (−1.4%, g= −0.07). For cold-water application, whole-body immersion (5.1%, g = 0.62) was significantly more effective than immersing only the legs or arms (1.1%, g = 0.10).Conclusions:In summary, the average effects of cooling on recovery of trained athletes were rather small (2.4%, g = 0.28). However, under appropriate conditions (whole-body cooling, recovery from sprint exercise), postexercise cooling seems to have positive effects that are large enough to be relevant for competitive athletes.


Medicina ◽  
2020 ◽  
Vol 56 (10) ◽  
pp. 539
Author(s):  
Yuri Hosokawa ◽  
Luke N. Belval ◽  
William M. Adams ◽  
Lesley W. Vandermark ◽  
Douglas J. Casa

Background and objectives: Exertional heat stroke (EHS) is a potentially lethal, hyperthermic condition that warrants immediate cooling to optimize the patient outcome. The study aimed to examine if a portable cooling vest meets the established cooling criteria (0.15 °C·min−1 or greater) for EHS treatment. It was hypothesized that a cooling vest will not meet the established cooling criteria for EHS treatment. Materials and Methods: Fourteen recreationally active participants (mean ± SD; male, n = 8; age, 25 ± 4 years; body mass, 86.7 ± 10.5 kg; body fat, 16.5 ± 5.2%; body surface area, 2.06 ± 0.15 m2. female, n = 6; 22 ± 2 years; 61.3 ± 6.7 kg; 22.8 ± 4.4%; 1.66 ± 0.11 m2) exercised on a motorized treadmill in a hot climatic chamber (ambient temperature 39.8 ± 1.9 °C, relative humidity 37.4 ± 6.9%) until they reached rectal temperature (TRE) >39 °C (mean TRE, 39.59 ± 0.38 °C). Following exercise, participants were cooled using either a cooling vest (VEST) or passive rest (PASS) in the climatic chamber until TRE reached 38.25 °C. Trials were assigned using randomized, counter-balanced crossover design. Results: There was a main effect of cooling modality type on cooling rates (F[1, 24] = 10.46, p < 0.01, η2p = 0.30), with a greater cooling rate observed in VEST (0.06 ± 0.02 °C·min−1) than PASS (0.04 ± 0.01 °C·min−1) (MD = 0.02, 95% CI = [0.01, 0.03]). There were also main effects of sex (F[1, 24] = 5.97, p = 0.02, η2p = 0.20) and cooling modality type (F[1, 24] = 4.38, p = 0.047, η2p = 0.15) on cooling duration, with a faster cooling time in female (26.9 min) than male participants (42.2 min) (MD = 15.3 min, 95% CI = [2.4, 28.2]) and faster cooling duration in VEST than PASS (MD = 13.1 min, 95% CI = [0.2, 26.0]). An increased body mass was associated with a decreased cooling rate in PASS (r = −0.580, p = 0.03); however, this association was not significant in vest (r = −0.252, p = 0.39). Conclusions: Although VEST exhibited a greater cooling capacity than PASS, VEST was far below an acceptable cooling rate for EHS treatment. VEST should not replace immediate whole-body cold-water immersion when EHS is suspected.


2016 ◽  
Vol 51 (6) ◽  
pp. 500-501 ◽  
Author(s):  
Emma A. Nye ◽  
Jessica R. Edler ◽  
Lindsey E. Eberman ◽  
Kenneth E. Games

Reference: Zhang Y, Davis JK, Casa DJ, Bishop PA. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc. 2015;47(11):2464−2472. Clinical Questions: Do optimal procedures exist for implementing cold-water immersion (CWI) that yields high cooling rates for hyperthermic individuals? Data Sources: One reviewer performed a literature search using PubMed and Web of Science. Search phrases were cold water immersion, forearm immersion, ice bath, ice water immersion, immersion, AND cooling. Study Selection: Studies were included based on the following criteria: (1) English language, (2) full-length articles published in peer-reviewed journals, (3) healthy adults subjected to exercise-induced hyperthermia, and (4) reporting of core temperature as 1 outcome measure. A total of 19 studies were analyzed. Data Extraction: Pre-immersion core temperature, immersion water temperature, ambient temperature, immersion duration, and immersion level were coded a priori for extraction. Data originally reported in graphical form were digitally converted to numeric values. Mean differences comparing the cooling rates of CWI with passive recovery, standard deviation of change from baseline core temperature, and within-subjects r were extracted. Two independent reviewers used the Physiotherapy Evidence Database (PEDro) scale to assess the risk of bias. Main Results: Cold-water immersion increased the cooling rate by 0.03°C/min (95% confidence interval [CI] = 0.03, 0.04°C/min) compared with passive recovery. Cooling rates were more effective when the pre-immersion core temperature was ≥38.6°C (P = .023), immersion water temperature was ≤10°C (P = .036), ambient temperature was ≥20°C (P = .013), or immersion duration was ≤10 minutes (P &lt; .001). Cooling rates for torso and limb immersion (mean difference = 0.04°C/min, 95% CI = 0.03, 0.06°C/min) were higher (P = .028) than those for forearm and hand immersion (mean difference = 0.01°C/min, 95% CI = −0.01, 0.04°C/min). Conclusions: Hyperthermic individuals were cooled twice as fast by CWI as by passive recovery. Therefore, the former method is the preferred choice when treating patients with exertional heat stroke. Water temperature should be &lt;10°C, with the torso and limbs immersed. Insufficient published evidence supports CWI of the forearms and hands.


2017 ◽  
Vol 12 (3) ◽  
pp. 402-409 ◽  
Author(s):  
Abd-Elbasset Abaïdia ◽  
Julien Lamblin ◽  
Barthélémy Delecroix ◽  
Cédric Leduc ◽  
Alan McCall ◽  
...  

Purpose:To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage.Methods:Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at –110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise.Results:Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = –0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = –0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = –0.68; 90% CI = –1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = –0.62; 90% CI = –1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes.Conclusions:CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24–48 h postexercise.


2015 ◽  
Vol 47 ◽  
pp. 459
Author(s):  
Cory L. Butts ◽  
Katherine E. Luhring ◽  
Cody R. Smith ◽  
Jenna M. Burchfield ◽  
Nicole E. Moyen ◽  
...  

2015 ◽  
Vol 47 (11) ◽  
pp. 2464-2472 ◽  
Author(s):  
YANG ZHANG ◽  
JON-KYLE DAVIS ◽  
DOUGLAS J. CASA ◽  
PHILLIP A. BISHOP

Sign in / Sign up

Export Citation Format

Share Document