scholarly journals An update review of stem cell applications in burns and wound care

2012 ◽  
Vol 45 (02) ◽  
pp. 229-236 ◽  
Author(s):  
Lin Huang ◽  
Andrew Burd

ABSTRACTThe ultimate goal of the treatment of cutaneous burns and wounds is to restore the damaged skin both structurally and functionally to its original state. Recent research advances have shown the great potential of stem cells in improving the rate and quality of wound healing and regenerating the skin and its appendages. Stem cell-based therapeutic strategies offer new prospects in the medical technology for burns and wounds care. This review seeks to give an updated overview of the applications of stem cell therapy in burns and wound management since our previous review of the "stem cell strategies in burns care".

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Michael S. Hu ◽  
Tripp Leavitt ◽  
Samir Malhotra ◽  
Dominik Duscher ◽  
Michael S. Pollhammer ◽  
...  

Issues surrounding wound healing have garnered deep scientific interest as well as booming financial markets invested in novel wound therapies. Much progress has been made in the field, but it is unsurprising to find that recent successes reveal new challenges to be addressed. With regard to wound healing, large tissue deficits, recalcitrant wounds, and pathological scar formation remain but a few of our most pressing challenges. Stem cell-based therapies have been heralded as a promising means by which to surpass current limitations in wound management. The wide differentiation potential of stem cells allows for the possibility of restoring lost or damaged tissue, while their ability to immunomodulate the wound bed from afar suggests that their clinical applications need not be restricted to direct tissue formation. The clinical utility of stem cells has been demonstrated across dozens of clinical trials in chronic wound therapy, but there is hope that other aspects of wound care will inherit similar benefit. Scientific inquiry into stem cell-based wound therapy abounds in research labs around the world. While their clinical applications remain in their infancy, the heavy investment in their potential makes it a worthwhile subject to review for plastic surgeons, in terms of both their current and future applications.


2018 ◽  
Vol 27 (12) ◽  
pp. 1723-1730 ◽  
Author(s):  
Haiqing Zheng ◽  
Bin Zhang ◽  
Pratik Y. Chhatbar ◽  
Yi Dong ◽  
Ali Alawieh ◽  
...  

Exogenous stem cell therapy (SCT) has been recognized recently as a promising neuroregenerative strategy to augment recovery in stroke survivors. Mesenchymal stem cells (MSCs) are the primary source of stem cells used in the majority of both pre-clinical and clinical studies in stroke. In the absence of evidence-based guidelines on the use of SCT in stroke patients, understanding the progress of MSC research across published studies will assist researchers and clinicians in better achieving success in translating research. We conducted a systematic review on published literature using MSCs in both pre-clinical studies and clinical trials between 2008 and 2017 using the public databases PubMed and Ovid Medline, and the clinical trial registry ( www.clinicaltrials.gov ). A total of 78 pre-clinical studies and eight clinical studies were identified. While majority of the pre-clinical and clinical studies demonstrated statistically significant effects, the clinical significance of these findings was still unclear. Effect sizes could not be measured mainly due to reporting issues in pre-clinical studies, thus limiting our ability to compare results across studies quantitatively. The overall quality of both pre-clinical and clinical studies was sub-optimal. By conducting a systematic review of both pre-clinical and clinical studies on MSCs therapy in stroke, we assessed the quality of current evidence and identified several issues and gaps in translating animal studies to human trials. Addressing these issues and incorporating changes into future animal studies and human trials may lead to better success of stem cells-based therapeutics in the near future.


Author(s):  
Zeinab Shaker ◽  
Zohreh Shaker ◽  
Mohsen Barouni

Background: Skin and wound injuries are important health problems with great mortality rates. While there are different alternative therapies, there is no agreement on the best therapy for burn wounds and wound complications. Stem cell therapy has an optimistic prospect in many preclinical studies of burn wounds and diabetic wounds. Objectives: In this study, we performed a rapid review to evaluate the efficacy and safety of stem cell therapy in wound treatment. Methods: This rapid review of the evidence aimed to evaluate the potential effects of stem cells on wound healing to create a policy guide for policymakers in the health care system. We searched such databases as PubMed and Scopus on March 13, 2021 using keywords, including “stem cells and wound healing”, “safety”, and “efficacy”. The references of retrieved studies were also checked to ensure the capture of the literature. Studies evaluating the safety and efficacy of stem cells on wound healing published in Persian and English were included. Generally, we used the PICO (population, intervention, control, and outcomes) model for search strategy. Results: Out of a total of 92 retrieved papers, 22 studies were eligible for inclusion. The overall review showed that stem cell therapy improved wounds. Also, studies showed that using stem cell technology in a non-invasive way could be a good alternative. However, the limitations of this technology consisted of the need to improve cell delivery methods, cell sustainability, heterogeneity in the research of mesenchymal stem cells, and wound substrate. Further studies are needed to determine its safety and efficacy. Conclusions: Although the evidence on the safety and efficacy of using stem cells for wound healing was limited, studies showed that stem cell technology is a good alternative to traditional therapies. Future clinical studies should consider the differences in the studies to achieve maximum effectiveness.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1546
Author(s):  
Shaima Maliha Riha ◽  
Manira Maarof ◽  
Mh Busra Fauzi

Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Stem cell therapy is used to treat a wide range of injuries and degenerative diseases of the skin. Nevertheless, many related studies demonstrated modest improvement in organ functions due to the low survival rate of transplanted cells at the targeted injured area. Thus, incorporating stem cells into biomaterial offer niches to transplanted stem cells, enhancing their delivery and therapeutic effects. Currently, through the skin tissue engineering approach, many attempts have employed biomaterials as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. This review aims to identify the limitations of stem cell therapy in wound healing treatment and potentially highlight how the use of various biomaterials can enhance the therapeutic efficiency of stem cells in tissue regeneration post-implantation. Moreover, the review discusses the combined effects of stem cells and biomaterials in in vitro and in vivo settings followed by identifying the key factors contributing to the treatment outcomes. Apart from stem cells and biomaterials, the role of growth factors and other cellular substitutes used in effective wound healing treatment has been mentioned. In conclusion, the synergistic effect of biomaterials and stem cells provided significant effectiveness in therapeutic outcomes mainly in wound healing improvement.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongqing Zhao ◽  
Min Wang ◽  
Feng Liang ◽  
Jiannan Li

AbstractSkin wound healing is a multi-stage process that depends on the coordination of multiple cells and mediators. Chronic or non-healing wounds resulting from the dysregulation of this process represent a challenge for the healthcare system. For skin wound management, there are various approaches to tissue recovery. For decades, stem cell therapy has made outstanding achievements in wound regeneration. Three major types of stem cells, including embryonic stem cells, adult stem cells, and induced pluripotent stem cells, have been explored intensely. Mostly, mesenchymal stem cells are thought to be an extensive cell type for tissue repair. However, the limited cell efficacy and the underutilized therapeutic potential remain to be addressed. Exploring novel and advanced treatments to enhance stem cell efficacy is an urgent need. Diverse strategies are applied to maintain cell survival and increase cell functionality. In this study, we outline current approaches aiming to improve the beneficial outcomes of cell therapy to better grasp clinical cell transformation.


Vascular ◽  
2012 ◽  
Vol 20 (5) ◽  
pp. 284-289 ◽  
Author(s):  
Caroline Jadlowiec ◽  
Robert A Brenes ◽  
Xin Li ◽  
Wei Lv ◽  
Clinton D Protack ◽  
...  

Although much progress has been made regarding our knowledge of stem cells and their potential applications for therapeutic angiogenesis, there has been less success with the clinical application of this knowledge to patients with critical limb ischemia (CLI). Patients with CLI often have chronic wounds and newer cell-based therapies for chronic wounds show interesting parallels to stem cell therapy for CLI. Several human-derived wound care products and therapies, including human neonatal fibroblast-derived dermis (Dermagraft®), bilayered bioengineered skin substitute (Apligraf®), recombinant human platelet-derived growth factor and autologous platelet-rich plasma may provide insight into the mechanisms through which differentiated cells can be used as therapy for chronic wounds, and, analogously, by which stem cells might function therapeutically in CLI.


2017 ◽  
Vol 2 (s4) ◽  
pp. 20-24 ◽  
Author(s):  
András Mester ◽  
Diana Opincariu ◽  
Imre Benedek ◽  
István Benedek

AbstractWound healing is a complex restorative process of the altered cutaneous tissue, which is impaired by numerous local and systemic factors, leading to chronic non-healing lesions with few efficient therapeutic options. Stem cells possess the capacity to differentiate into various types of cell lines. Furthermore, stem cells are able to secrete cytokines and growth factors, modulating inflammation and ultimately leading to angiogenesis, fibrogenesis, and epithelization. Because of their paracrine activity, these cells are able to attract other cell types to the base of the wound, improving the formation of new skin layers. Mesenchymal stem cells derived from the adipose tissue, bone marrow, and placenta, offer numerous ways of implementation. The process of harvesting, growing, and administrating stem cells depends on the site and type of the cells, but recent trial results showed improvement of wound healing independent of the administration site. Bioengineered skin substitutes are validated for treatment of chronic wounds with direct application on the skin surface. These offer physical scaffolding for the migrating cells and promote secretion of growth factors, thus facilitating rapid wound healing. Obtaining further clinical data is essential, but stem cell therapy may become a first-line therapeutic choice for the treatment of non-healing chronic wounds.


2009 ◽  
Vol 35 (2) ◽  
pp. 85-93 ◽  
Author(s):  
L. Vija ◽  
D. Farge ◽  
J.-F. Gautier ◽  
P. Vexiau ◽  
C. Dumitrache ◽  
...  

2014 ◽  
Vol 20 ◽  
pp. S128-S131 ◽  
Author(s):  
Hideki Mochizuki ◽  
Chi-Jing Choong ◽  
Toru Yasuda

2021 ◽  
Author(s):  
Lianxu Cui ◽  
Yasmeen Saeed ◽  
Haomin Li ◽  
Jingli Yang

Traumatic brain injury (TBI) is a serious health concern, yet there is a lack of standardized treatment to combat its long-lasting effects. The objective of the present study was to provide an overview of the limitation of conventional stem cell therapy in the treatment of TBI and to discuss the application of novel acellular therapies and their advanced strategies to enhance the efficacy of stem cells derived therapies in the light of published study data. Moreover, we also discussed the factor to optimize the therapeutic efficiency of stem cell-derived acellular therapy by overcoming the challenges for its clinical translation. Hence, we concluded that acellular therapy possesses the potential to bring a breakthrough in the field of regenerative medicine to treat TBI.


Sign in / Sign up

Export Citation Format

Share Document