scholarly journals Stem Cell-Based Therapeutics to Improve Wound Healing

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Michael S. Hu ◽  
Tripp Leavitt ◽  
Samir Malhotra ◽  
Dominik Duscher ◽  
Michael S. Pollhammer ◽  
...  

Issues surrounding wound healing have garnered deep scientific interest as well as booming financial markets invested in novel wound therapies. Much progress has been made in the field, but it is unsurprising to find that recent successes reveal new challenges to be addressed. With regard to wound healing, large tissue deficits, recalcitrant wounds, and pathological scar formation remain but a few of our most pressing challenges. Stem cell-based therapies have been heralded as a promising means by which to surpass current limitations in wound management. The wide differentiation potential of stem cells allows for the possibility of restoring lost or damaged tissue, while their ability to immunomodulate the wound bed from afar suggests that their clinical applications need not be restricted to direct tissue formation. The clinical utility of stem cells has been demonstrated across dozens of clinical trials in chronic wound therapy, but there is hope that other aspects of wound care will inherit similar benefit. Scientific inquiry into stem cell-based wound therapy abounds in research labs around the world. While their clinical applications remain in their infancy, the heavy investment in their potential makes it a worthwhile subject to review for plastic surgeons, in terms of both their current and future applications.

2012 ◽  
Vol 45 (02) ◽  
pp. 229-236 ◽  
Author(s):  
Lin Huang ◽  
Andrew Burd

ABSTRACTThe ultimate goal of the treatment of cutaneous burns and wounds is to restore the damaged skin both structurally and functionally to its original state. Recent research advances have shown the great potential of stem cells in improving the rate and quality of wound healing and regenerating the skin and its appendages. Stem cell-based therapeutic strategies offer new prospects in the medical technology for burns and wounds care. This review seeks to give an updated overview of the applications of stem cell therapy in burns and wound management since our previous review of the "stem cell strategies in burns care".


2012 ◽  
Vol 45 (02) ◽  
pp. 418-424 ◽  
Author(s):  
Ananda A. Dorai

ABSTRACTWound care is constantly evolving with the advances in medicine. Search for the ideal dressing material still continues as wound care professionals are faced with several challenges. Due to the emergence of multi-resistant organisms and a decrease in newer antibiotics, wound care professionals have revisited the ancient healing methods by using traditional and alternative medicine in wound management. People′s perception towards traditional medicine has also changed and is very encouraging. The concept of moist wound healing has been well accepted and traditional medicine has also incorporated this method to fasten the healing process. Several studies using herbal and traditional medicine from different continents have been documented in wound care management. Honey has been used extensively in wound care practice with excellent results. Recent scientific evidences and clinical trials conducted using traditional and alternative medicine in wound therapy holds good promise in the future.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2118
Author(s):  
Hytham N. Fageeh

Background: Dental pulp tissue within the central cavity of the tooth is composed of dental pulp stem cells (DPSC). These mesenchymal stem cells have good proliferative as well as differentiation potential. DPSC has been isolated even from teeth with inflamed pulps and is found to retain their proliferative and differentiation potential. Little research is available about the viability and differentiation potential of DPSC obtained from teeth with periodontitis. In the present study, the aim was to compare the morphological features, stem cell marker (MSC) expression, proliferation rate, migratory and wound healing properties, osteogenic and chondrogenic differentiation potential of DPSCs obtained from periodontally healthy teeth (hDPSCs) and periodontitis affected teeth (pDPSCs). Methods: Dental pulp tissue was obtained from periodontally healthy volunteers (n = 3) and patients with periodontitis undergoing extraction of mobile teeth (n = 3). DPSC were isolated using the explant technique and cultured. All the experiments were performed at early passage (Passage 2), late passage (Passage 6) and after cryopreservation. Morphological features of the hDPSCs and pDPSCs were ascertained using microscopy. The expression of cell surface stem cell markers was assessed by the flow cytometry method. The proliferation and growth rate of the cells were assayed by plotting a growth curve from 0–13 days of culture. The migratory characteristics were assessed by wound scratch assay. Osteogenic and chondrogenic differentiation of the cells was assessed using standard protocols with and without induction. Results: DPSCs were successfully obtained from periodontally healthy teeth (hDPSC) and periodontitis-affected teeth (pDPSCs). The data suggests that there were no morphological differences observed in early passage cells between the two cohorts. Cryopreservation did change the morphology of pDSPCs. There was no significant difference in the positive expression of mesenchymal markers CD73, CD90 and CD105 in early passage cells. However, serial passaging and cryopreservation affected the marker expression in pDPSCs. A faint expression of hematopoietic stem cell markers CD34, CD45 and MHC class II antigen HLA-DR was observed in both the cell types. The expression of HLA-DR is upregulated in pDPSCs compared to hDPSC. A significantly slower growth rate and slower wound healing properties was observed in pDPSCs compared to hDPSC. In late passage and after cryopreservation, the migratory ability of pDPSCs was found to be increased drastically. There was no significant difference in osteogenic potential between the two cell types. However, the chondrogenic potential of pDPSCs was significantly lower compared to hDPSc. Yet, pDPSCs showed enhanced osteogenesis and chondrogenesis at late passage as well as after cryopreservation. Conclusion: The results of this novel study shed light on the isolation of viable DPSC from periodontitis-affected teeth. These cells exhibit a slower growth rate and migratory characteristics compared to their healthy counterparts. There was no difference in osteogenic potential but a reduction in chondrogenic potential was seen in pDPSCs compared to hDPSC. The findings reveal that DPSC from periodontitis-affected teeth presents an easy and viable option for regenerative medicine application. Some additional nutritive factors and protocols may be required to attain better regenerative benefits while using pDPSCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongqing Zhao ◽  
Min Wang ◽  
Feng Liang ◽  
Jiannan Li

AbstractSkin wound healing is a multi-stage process that depends on the coordination of multiple cells and mediators. Chronic or non-healing wounds resulting from the dysregulation of this process represent a challenge for the healthcare system. For skin wound management, there are various approaches to tissue recovery. For decades, stem cell therapy has made outstanding achievements in wound regeneration. Three major types of stem cells, including embryonic stem cells, adult stem cells, and induced pluripotent stem cells, have been explored intensely. Mostly, mesenchymal stem cells are thought to be an extensive cell type for tissue repair. However, the limited cell efficacy and the underutilized therapeutic potential remain to be addressed. Exploring novel and advanced treatments to enhance stem cell efficacy is an urgent need. Diverse strategies are applied to maintain cell survival and increase cell functionality. In this study, we outline current approaches aiming to improve the beneficial outcomes of cell therapy to better grasp clinical cell transformation.


2012 ◽  
Vol 19 (2) ◽  
pp. 75-79 ◽  
Author(s):  
Gabrielis KUNDROTAS

Human mesenchymal stem cells (MSCs) are widely used for treatment of various diseases. Clinical applications require large quantities of MSCs, therefore these cells must be expanded in the culture system. It is believed that contamination of MSC cultures with fibroblasts may lead to the decrease of the stem cell differentiation potential. Moreover, such stem cell preparations are potentially unsafe to use for clinical applications since a few fibroblasts can become tumorigenic. Therefore, there is a need to separate MSCs from fibroblasts. However, studies show that MSCs and fibroblasts have much in common. These two types of cells share such properties as identical spindle-like morphology, plastic adherence and the same expression of most surface antigens. The aim of this review article is to analyze the literature on the similarities and differences between the MSCs and fibroblasts, particularly in the expression of cell surface markers in order to determine which could be used for quick separating of MSCs from fibroblasts. Interestingly, the results of recent studies suggest that the use of CD10, CD26, CD106, CD146 and ITGA11 could be helpful for the discrimination of MSCs from fibroblasts. Identification and elimination of fibroblasts from MSC cultures could improve the MSC yield and differentiation potential and also prevent possible tumor formation after MSC transplantation.


WCET Journal ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 9-18
Author(s):  
Wai Sze Ho ◽  
Wai Kuen Lee ◽  
Ka Kay Chan ◽  
Choi Ching Fong

Objectives The aim of this study was to retrospectively review the effectiveness of negative pressure wound therapy (NPWT) in sternal wound healing with the use of the validated Bates-Jensen Wound Assessment Tool (BWAT), and explore the role of NPWT over sternal wounds and future treatment pathways. Methods Data was gathered from patients' medical records and the institution's database clinical management system. Seventeen subjects, who had undergone cardiothoracic surgeries and subsequently consulted the wound care team in one year were reviewed. Fourteen of them were included in the analysis. Healing improvement of each sternal wound under continuous NPWT and continuous conventional dressings was studied. In total, 23 continuous NPWT and 13 conventional dressing episodes were analysed with the BWAT. Results Among conventional dressing episodes, sternal wound improvement was 2.5–3% over 10 days to 3.5 weeks, whereas 4–5% sternal healing was achieved in 5 days to 2 weeks with sternal wire presence. Better healing at 11% in 1 week by conventional dressing was attained after sternal wire removal. In NPWT episodes, 8–29%, 13–24%, and 15–46% of healing was observed in 2 weeks, 3.5 to 5 weeks and 6 to 7 weeks, respectively. Only 39% wound healing was acquired at the 13th week of NPWT in one subject. With sternal wire present, 6%–29% wound healing progress was achieved by NPWT in 1–4 weeks, and 16–23% wound improvement in 2 to 4.5 weeks by NWPT after further surgical debridement. After sternal wire removal, 6–34% sternal wound healing occurred by continuous NPWT for 1–2 weeks, and maximum healing at 46% after 2.5 weeks of NPWT were observed. Conclusions Better wound healing was achieved in the NPWT group in comparison to conventional dressings alone. However, suboptimal sternal wound healing by NPWT alone was observed. Removal of sternal wire may improve the effectiveness of NPWT. Successful tertiary closure after NPWT among subjects supports the important bridging role of NPWT in sternal wound healing. Factors causing stagnant sternal wound healing by NPWT alone are discussed.


2020 ◽  
Vol 15 (6) ◽  
pp. 531-546 ◽  
Author(s):  
Hwa-Yong Lee ◽  
In-Sun Hong

Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1918
Author(s):  
Young-Bum Son ◽  
Yeon Ik Jeong ◽  
Yeon Woo Jeong ◽  
Mohammad Shamim Hossein ◽  
Per Olof Olsson ◽  
...  

Mesenchymal stem cells (MSCs) are promising multipotent cells with applications for cartilage tissue regeneration in stem cell-based therapies. In cartilage regeneration, both bone marrow (BM-MSCs) and synovial fluid (SF-MSCs) are valuable sources. However, the cellular characteristics and chondrocyte differentiation potential were not reported in either of the camel stem cells. The in vitro chondrocyte differentiation competence of MSCs, from (BM and SF) sources of the same Camelus dromedaries (camel) donor, was determined. Both MSCs were evaluated on pluripotent markers and proliferation capacity. After passage three, both MSCs showed fibroblast-like morphology. The proliferation capacity was significantly increased in SF-MSCs compared to BM-MSCs. Furthermore, SF-MSCs showed an enhanced expression of transcription factors than BM-MSCs. SF-MSCs exhibited lower differentiation potential toward adipocytes than BM-MSCs. However, the osteoblast differentiation potential was similar in MSCs from both sources. Chondrogenic pellets obtained from SF-MSCs revealed higher levels of chondrocyte-specific markers than those from BM-MSCs. Additionally, glycosaminoglycan (GAG) content was elevated in SF-MSCs related to BM-MSCs. This is, to our knowledge, the first study to establish BM-MSCs and SF-MSCs from the same donor and to demonstrate in vitro differentiation potential into chondrocytes in camels.


2021 ◽  
Vol 22 (8) ◽  
pp. 4011
Author(s):  
Brianna Chen ◽  
Dylan McCuaig-Walton ◽  
Sean Tan ◽  
Andrew P. Montgomery ◽  
Bryan W. Day ◽  
...  

Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jurate Savickiene ◽  
Grazina Treigyte ◽  
Sandra Baronaite ◽  
Giedre Valiuliene ◽  
Algirdas Kaupinis ◽  
...  

Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs) from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics. AF-MSCs differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and neuronal cells, as determined by morphological changes, cell staining, and RT-qPCR showing the tissue-specific gene presence for differentiated cell lineages. Using SYNAPT G2 High Definition Mass Spectrometry technique approach, we performed for the first time the comparative proteomic analysis between undifferentiated AF-MSCs from late trimester of gestation and differentiated into myogenic, adipogenic, osteogenic, and neurogenic lineages. The analysis of the functional and expression patterns of 250 high abundance proteins selected from more than 1400 demonstrated the similar proteome of cultured and differentiated AF-MSCs but the unique changes in their expression profile during cell differentiation that may help the identification of key markers in differentiated cells. Our results provide evidence that human amniotic fluid of second- and third-trimester contains stem cells with multilineage potential and may be attractive source for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document