scholarly journals Optogenetic activation of intracellular signaling based on light-inducible protein-protein homo-interactions

2022 ◽  
Vol 17 (1) ◽  
pp. 25
Author(s):  
Liting Duan ◽  
Peiyuan Huang ◽  
Zhihao Zhao
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Nanlin Yin ◽  
Hua Zhang ◽  
Xin Luo ◽  
Yubin Ding ◽  
Xiaoqiu Xiao ◽  
...  

Purpose.To investigate the effects of IL-27 on human trophoblasts and the underlying regulatory signaling mechanisms in preeclampsia.Methods.The expression of IL-27 and IL-27 receptor (WSX-1) was studied in the placenta or sera from patients with preeclampsia.In vitro, we investigated the effects of IL-27 alone or in combination with inflammatory cytokine tumor necrosis factor (TNF-α) on the proinflammatory activation of human trophoblast cells (HTR-8/SVneo) and the underlying intracellular signaling molecules.Results.The expression of IL-27 and IL-27 receptorα(WSX-1) was significantly elevated in the trophoblastic cells from the placenta of patients with preeclampsia compared with control specimens.In vitro, IL-27 could induce the expression of inflammatory factors IFN-γ-inducible protein 10 (CXCL10/IP-10) and IL-6 in trophoblasts, and a synergistic effect was observed in the combined treatment of IL-27 and TNF-αon the release of IP-10 and IL-6. Furthermore, the production of IP-10 and IL-6 stimulated by IL-27 was differentially regulated by intracellular activation of phosphatidylinositol 3-OH kinase-AKT, p38MAPK, and JAK/STAT pathways.Conclusions.These results provide a new insight into the IL-27-activated immunopathological effects mediated by distinct intracellular signal transduction molecules in preeclampsia.


2018 ◽  
Author(s):  
Laura Riccetti ◽  
Samantha Sperduti ◽  
Clara Lazzaretti ◽  
Simonetta Tagliavini ◽  
Manuela Simoni ◽  
...  

2019 ◽  
Vol 106 (3) ◽  
pp. 250-260 ◽  
Author(s):  
DN Nandakumar ◽  
P Ramaswamy ◽  
C Prasad ◽  
D Srinivas ◽  
K Goswami

Purpose Glioblastoma cells create glutamate-rich tumor microenvironment, which initiates activation of ion channels and modulates downstream intracellular signaling. N-methyl-D-aspartate receptors (NMDARs; a type of glutamate receptors) have a high affinity for glutamate. The role of NMDAR activation on invasion of glioblastoma cells and the crosstalk with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is yet to be explored. Main methods LN18, U251MG, and patient-derived glioblastoma cells were stimulated with NMDA to activate NMDAR glutamate receptors. The role of NMDAR activation on invasion and migration and its crosstalk with AMPAR were evaluated. Invasion and migration of glioblastoma cells were investigated by in vitro trans-well Matrigel invasion and trans-well migration assays, respectively. Expression of NMDARs and AMPARs at transcript level was evaluated by quantitative real-time polymerase chain reaction. Results We determined that NMDA stimulation leads to enhanced invasion in LN18, U251MG, and patient-derived glioblastoma cells, whereas inhibition of NMDAR using MK-801, a non-competitive antagonist of the NMDAR, significantly decreased the invasive capacity. Concordant with these findings, migration was significantly augmented by NMDAR in both cell lines. Furthermore, NMDA stimulation upregulated the expression of GluN2 and GluA1 subunits at the transcript level. Conclusions This study demonstrated the previously unexplored role of NMDAR in invasion of glioblastoma cells. Furthermore, the expression of the GluN2 subunit of NMDAR and the differential overexpression of the GluA1 subunit of AMPAR in both cell lines provide a plausible rationale of crosstalk between these calcium-permeable subunits in the glutamate-rich microenvironment of glioblastoma.


2020 ◽  
Author(s):  
Guanjun Deng ◽  
Xinghua Peng ◽  
Zhihong Sun ◽  
Wei Zheng ◽  
Jia Yu ◽  
...  

Nature has always inspired robotic designs and concepts. It is conceivable that biomimic nanorobots will soon play a prominent role in medicine. In this paper, we developed a natural killer cell-mimic AIE nanoterminator (NK@AIEdots) by coating natural kill cell membrane on the AIE-active polymeric endoskeleton, PBPTV, a highly bright NIR-II AIE-active conjugated polymer. Owning to the AIE and soft-matter characteristics of PBPTV, as-prepared nanoterminator maintained the superior NIR-II brightness (quantum yield ~8%) and good biocompatibility. Besides, they could serve as tight junctions (TJs) modulator to trigger an intracellular signaling cascade, causing TJs disruption and actin cytoskeleton reorganization to form intercellular “green channel” to help themselves crossing Blood-Brain Barriers (BBB) silently. Furthermore, they could initiatively accumulate to glioblastoma cells in the complex brain matrix for high-contrast and through-skull tumor imaging. The tumor growth was also greatly inhibited by these nanoterminator under the NIR light illumination. As far as we known, The QY of PBPTV is the highest among the existing NIR-II luminescent conjugated polymers. Besides, the NK-cell biomimetic nanorobots will open new avenue for BBB-crossing delivery.


2008 ◽  
Vol 1 (4) ◽  
pp. A353
Author(s):  
Shenandoah Robinson ◽  
Qing Li

Introduction Many infants born very preterm who suffer brain damage most likely experienced a combined insult from intrauterine infection and placental insufficiency. Damage is thought to be synergistic rather than additive but the mechanisms of combined injury remain elusive. A combination of lipopolysaccharide-induced inflammation and hypoxia-ischemia has been used in rats to model the dual insult that occurs in human infants prenatally. Erythropoietin, a pleiotrophic cytokine that is essential for central nervous system development, ameliorates brain injury after isolated hypoxic-ischemic or inflammatory insults through different intracellular signaling pathways. We hypothesized that exogenous neonatal EPO administration would lessen the damage of a combined prenatal insult in rats. Methods On embryonic Day 18 fetal rats experienced 60 minutes of transient uterine artery occlusion with or without intracervical LPS administration with sham controls receiving surgery but no occlusion and saline for LPS. Survival was recorded and histological biochemical and functional assays were performed. Means were compared with ANOVA with Tukey HSD post hoc analysis. Results After a combined insult of HI and 0.15-mg/kg LPS on E18 the survival of pups by postnatal Day 1 (P1) decreased from 77% with HI alone to 22% for LPS plus HI. When exogenous systemic EPO was administered P1–P3 survival to P9 improved markedly from 40% (2 of 5) for saline-treated insult pups to 100% (6 of 6) for EPO-treated. Initial histological analyses show EPO decreases the number of brain activated caspase 3 and activated microglia by P9. Additional analyses will be presented. Conclusion As at least 60% of placentas from infants born pre-term show evidence of chorioamnionitis, assessment of the impact of exogenous EPO on a model of a combination injury is essential prior to proceeding with a clinical trial. Initial results indicate neonatal exogenous EPO mitigates damage from the combined insult.


2012 ◽  
Vol 2 (10) ◽  
pp. 351
Author(s):  
Fu-Chao Liu ◽  
Huang-Ping Yu

Resveratrol, is a polyphenol that can be extracted from grapes and red wine, possess potential anti-inflammatory effects, which would result in the reduction of cytokine production, the alteration of the expression of adhesion molecule molecules, and the inhibition of neutrophil function. Resveratrol might also act as an antioxidant, anti-aging, and control of cell cycle and apoptosis. Resveratrol has been shown to have protective effects for patients in shock-like states. Such protective phenomenon is reported to be implicated in a variety of intracellular signaling pathways including the regulation of the mitogen-activated protein kinases (MAPK)/ hemeoxygenase-1 (HO-1) pathway, activates estrogen receptor (ER), and the mediation of pro-inflammatory cytokines, reactive oxygen species (ROS) formation and reactive. Moreover, through anti-inflammatory effects and antioxidant properties, the resveratrol is believed to maintain organ function following trauma-hemorrhage.Key words: resveratrol, anti-inflammatory, trauma-hemorrhage.


Sign in / Sign up

Export Citation Format

Share Document