Zika virus disease: The current status and necessity to implement Strategic Response Framework

2017 ◽  
Vol 10 (1) ◽  
pp. 277
Author(s):  
SaurabhR Shrivastava ◽  
PrateekS Shrivastava ◽  
Jegadeesh Ramasamy
2016 ◽  
Vol 65 (12) ◽  
Author(s):  
Naomi K. Tepper ◽  
Howard I. Goldberg ◽  
Manuel I. Vargas Bernal ◽  
Brenda Rivera ◽  
Meghan T. Frey ◽  
...  

2020 ◽  
Vol 18 ◽  
Author(s):  
Rina Das ◽  
Dinesh Kumar Mehta ◽  
Meenakshi Dhanawat

Abstract:: A novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appeared and expanded globally by the end of year in 2019 from Wuhan, China, causing severe acute respiratory syndrome. During its initial stage, the disease was called the novel coronavirus (2019-nCoV). It was named COVID-19 by the World Health Organization (WHO) on 11 February 2020. The WHO declared worldwide the SARS-CoV-2 virus a pandemic on March 2020. On 30 January 2020 the first case of Corona Virus Disease 2019 (COVID-19) was reported in India. Now in current situation the virus is floating in almost every part of the province and rest of the globe. -: On the basis of novel published evidences, we efficiently summarized the reported work with reference to COVID-19 epidemiology, pathogen, clinical symptoms, treatment and prevention. Using several worldwide electronic scientific databases such as Pubmed, Medline, Embase, Science direct, Scopus, etc were utilized for extensive investigation of relevant literature. -: This review is written in the hope of encouraging the people successfully with the key learning points from the underway efforts to perceive and manage SARS-CoV-2, suggesting sailent points for expanding future research.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Mahmoud A. Ibrahim ◽  
Attila Dénes

AbstractWe present a compartmental population model for the spread of Zika virus disease including sexual and vectorial transmission as well as asymptomatic carriers. We apply a non-autonomous model with time-dependent mosquito birth, death and biting rates to integrate the impact of the periodicity of weather on the spread of Zika. We define the basic reproduction number $${\mathscr {R}}_{0}$$ R 0 as the spectral radius of a linear integral operator and show that the global dynamics is determined by this threshold parameter: If $${\mathscr {R}}_0 < 1,$$ R 0 < 1 , then the disease-free periodic solution is globally asymptotically stable, while if $${\mathscr {R}}_0 > 1,$$ R 0 > 1 , then the disease persists. We show numerical examples to study what kind of parameter changes might lead to a periodic recurrence of Zika.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 266 ◽  
Author(s):  
Aryamav Pattnaik ◽  
Bikash R. Sahoo ◽  
Asit K. Pattnaik

The recently emerged Zika virus (ZIKV) spread to the Americas, causing a spectrum of congenital diseases including microcephaly in newborn and Guillain-Barré syndrome (GBS) in adults. The unprecedented nature of the epidemic and serious diseases associated with the viral infections prompted the global research community to understand the immunopathogenic mechanisms of the virus and rapidly develop safe and efficacious vaccines. This has led to a number of ZIKV vaccine candidates that have shown significant promise in human clinical trials. These candidates include nucleic acid vaccines, inactivated vaccines, viral-vectored vaccines, and attenuated vaccines. Additionally, a number of vaccine candidates have been shown to protect animals in preclinical studies. However, as the epidemic has waned in the last three years, further development of the most promising vaccine candidates faces challenges in clinical efficacy trials, which is needed before a vaccine is brought to licensure. It is important that a coalition of government funding agencies and private sector companies is established to move forward with a safe and effective vaccine ready for deployment when the next ZIKV epidemic occurs.


KYAMC Journal ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 719-725
Author(s):  
Md Daharul Islam ◽  
SM Tajdit Rahman ◽  
Khaleda Akhter ◽  
Md Azizul Hoque ◽  
Anannya Roy ◽  
...  

Zika virus is a flavivirus related to Dengue virus, yellow fever virus and West Nile virus. It is considered an emerging arbovirus transmitted by mosquito of the genus Aedes. Its first description took place in 1947 in the Zika Forest in Uganda, isolated on Rhesus monkey used as bait to study the yellow fever virus. Clinical picture is characterized as a 'dengue-like' syndrome, with abrupt onset of fever; and an early onset of evanescent rash, often pruritic. Occasionally the disease has been associated with Guillain-Barré syndrome. The diagnosis can be performed by PCR or by IgG and IgM antibodies detection. No specific treatment or vaccine is available for Zika virus disease. Treatment is generally supportive. Control measures are same for dengue and chikungunya based mostly on health education and vector control.KYAMC Journal Vol. 7, No.-1, Jul 2016, Page 719-725


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Mainak Bardhan ◽  
Debolina Pramanik ◽  
Rizana Riyaz ◽  
Mohammad Mehedi Hasan ◽  
Mohammad Yasir Essar

AbstractThe COVID-19 pandemic has wreaked havoc in the world from last year, and any further insults like Zika virus will surely bring the apocalypse unto us. In July 2021, Zika began spreading in India, mainly in the state of Kerala. Zika infection resembles closely COVID-19 and other arboviral infections, which might lead to delayed and misdiagnosis, further leading to underreporting of cases. Some of the feared complications of Zika include Guillain–Barré syndrome and congenital Zika syndrome leading to microcephaly. Thus, Zika virus disease (ZVD) has significant public health and social impacts. Since the trifecta of infectious diseases (host, agent and environment) are all conducive to the spread of Zika in India, there is a huge risk that ZVD might become endemic in India, which is especially dangerous in the backdrop of this pandemic. This has to be stopped at all costs: the main aspects of which are public health measures, vector control and early diagnosis, especially in case of pregnant women. The diversion of healthcare resources for this pandemic has albeit made this difficult, but we must do our bit if we have to overcome this situation.


2017 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
AdelI Al-Afaleq
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Amelia K. Pinto ◽  
Mariah Hassert ◽  
Xiaobing Han ◽  
Douglas Barker ◽  
Trevor Carnelley ◽  
...  

The closely related flaviviruses, dengue and Zika, cause significant human disease throughout the world. While cross-reactive antibodies have been demonstrated to have the capacity to potentiate disease or mediate protection during flavivirus infection, the mechanisms responsible for this dichotomy are still poorly understood. To understand how the human polyclonal antibody response can protect against, and potentiate the disease in the context of dengue and Zika virus infection we used intravenous hyperimmunoglobulin (IVIG) preparations in a mouse model of the disease. Three IVIGs (ZIKV-IG, Control-Ig and Gamunex®) were evaluated for their ability to neutralize and/or enhance Zika, dengue 2 and 3 viruses in vitro. The balance between virus neutralization and enhancement provided by the in vitro neutralization data was used to predict the IVIG concentrations which could protect or enhance Zika, and dengue 2 disease in vivo. Using this approach, we were able to define the unique in vivo dynamics of complex polyclonal antibodies, allowing for both enhancement and protection from flavivirus infection. Our results provide a novel understanding of how polyclonal antibodies interact with viruses with implications for the use of polyclonal antibody therapeutics and the development and evaluation of the next generation flavivirus vaccines.


Sign in / Sign up

Export Citation Format

Share Document