scholarly journals Zika Virus: A Clinical Review

KYAMC Journal ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 719-725
Author(s):  
Md Daharul Islam ◽  
SM Tajdit Rahman ◽  
Khaleda Akhter ◽  
Md Azizul Hoque ◽  
Anannya Roy ◽  
...  

Zika virus is a flavivirus related to Dengue virus, yellow fever virus and West Nile virus. It is considered an emerging arbovirus transmitted by mosquito of the genus Aedes. Its first description took place in 1947 in the Zika Forest in Uganda, isolated on Rhesus monkey used as bait to study the yellow fever virus. Clinical picture is characterized as a 'dengue-like' syndrome, with abrupt onset of fever; and an early onset of evanescent rash, often pruritic. Occasionally the disease has been associated with Guillain-Barré syndrome. The diagnosis can be performed by PCR or by IgG and IgM antibodies detection. No specific treatment or vaccine is available for Zika virus disease. Treatment is generally supportive. Control measures are same for dengue and chikungunya based mostly on health education and vector control.KYAMC Journal Vol. 7, No.-1, Jul 2016, Page 719-725

2015 ◽  
Vol 28 (6) ◽  
pp. 760 ◽  
Author(s):  
Vitor Laerte Pinto Junior ◽  
Kleber Luz ◽  
Ricardo Parreira ◽  
Paulo Ferrinho

Zika virus is a flavivirus related to Dengue virus, yellow fever virus and West Nile virus. It is considered an emerging arbovirus transmitted by mosquitos of the genus Aedes. Its first description took place in 1947 in the Zika Forest in Uganda, isolated on Rhesus monkey used as bait to study the yellow fever virus. Sporadic cases have been detected in African countries and at the end of the 70’s in Indonesia. In 2007, epidemics were described in Micronesia and other islands in the Pacific Ocean and more recently in Brazil. Clinical picture is characterized as a ‘dengue-like’ syndrome, with abrupt onset of fever and an early onset evanescent rash, often pruritic. Occasionally the disease has been associated with Guillain-Barré syndrome. Nevertheless, until now deaths and complications caused by the disease were not reported. The diagnosis can be performed by PCR or by IgG and IgM antibodies detection. The rapid spread of the virus and its epidemic potential are especially problematic in countries where there are the circulation of other arboviruses which<br />imposes difficulties in the differential diagnosis and healthcare burden. Control measures are the same recommended for dengue and chikungunya which are based in health education and vector control.


2019 ◽  
Vol 268 ◽  
pp. 53-55 ◽  
Author(s):  
José A. Boga ◽  
Marta E. Alvarez-Arguelles ◽  
Susana Rojo-Alba ◽  
Mercedes Rodríguez ◽  
María de Oña ◽  
...  

2019 ◽  
Vol 93 (14) ◽  
Author(s):  
Lisa Miorin ◽  
Maudry Laurent-Rolle ◽  
Giuseppe Pisanelli ◽  
Pierre Hendrick Co ◽  
Randy A. Albrecht ◽  
...  

ABSTRACT The recent yellow fever virus (YFV) epidemic in Brazil in 2017 and Zika virus (ZIKV) epidemic in 2015 serve to remind us of the importance of flaviviruses as emerging human pathogens. With the current global flavivirus threat, there is an urgent need for antivirals and vaccines to curb the spread of these viruses. However, the lack of suitable animal models limits the research questions that can be answered. A common trait of all flaviviruses studied thus far is their ability to antagonize interferon (IFN) signaling so as to enhance viral replication and dissemination. Previously, we reported that YFV NS5 requires the presence of type I IFN (IFN-α/β) for its engagement with human signal transducer and activator of transcription 2 (hSTAT2). In this manuscript, we report that like the NS5 proteins of ZIKV and dengue virus (DENV), YFV NS5 protein is able to bind hSTAT2 but not murine STAT2 (mSTAT2). Contrary to what has been demonstrated with ZIKV NS5 and DENV NS5, replacing mSTAT2 with hSTAT2 cannot rescue the YFV NS5-STAT2 interaction, as YFV NS5 is also unable to interact with hSTAT2 in murine cells. We show that the IFN-α/β-dependent ubiquitination of YFV NS5 that is required for STAT2 binding in human cells is absent in murine cells. In addition, we demonstrate that mSTAT2 restricts YFV replication in vivo. These data serve as further impetus for the development of an immunocompetent mouse model that can serve as a disease model for multiple flaviviruses. IMPORTANCE Flaviviruses such as yellow fever virus (YFV), Zika virus (ZIKV), and dengue virus (DENV) are important human pathogens. A common flavivirus trait is the antagonism of interferon (IFN) signaling to enhance viral replication and spread. We report that like ZIKV NS5 and DENV NS5, YFV NS5 binds human STAT2 (hSTAT2) but not mouse STAT2 (mSTAT2), a type I IFN (IFN-α/β) pathway component. Additionally, we show that contrary to what has been demonstrated with ZIKV NS5 and DENV NS5, YFV NS5 is unable to interact with hSTAT2 in murine cells. We demonstrate that mSTAT2 restricts YFV replication in mice and that this correlates with a lack of IFN-α/β-induced YFV NS5 ubiquitination in murine cells. The lack of suitable animal models limits flavivirus pathogenesis, vaccine, and drug research. These data serve as further impetus for the development of an immunocompetent mouse model that can serve as a disease model for multiple flaviviruses.


Author(s):  
Raphaëlle Klitting ◽  
Carlo Fischer ◽  
Jan F. Drexler ◽  
Ernest A. Gould ◽  
David Roiz ◽  
...  

As revealed by the recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America, YFV control measures need urgent rethinking. Over the last decade, most reported outbreaks occurred in, or eventually reached, areas of low vaccination coverage but suitable for virus transmission, with an unprecedented risk of expansion to densely populated territories in Africa, South America and Asia. As reflected in the World Health Organization&rsquo;s initiative launched in 2017, it is high time to strengthen epidemiological surveillance to monitor accurately, viral dissemination and redefine vaccination recommendation areas. Vector-control and immunisation measures need to be adapted and vaccine manufacturing must be reconciled with an increasing demand. We will have to face more YF cases in the upcoming years hence, improving disease management through the development of efficient treatments will prove most beneficial. Undoubtedly, these developments will require in-depth descriptions of YFV biology at molecular, physiological and ecological levels. This second section of the two-part review describes the current state of knowledge and gaps regarding the molecular biology of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.


2019 ◽  
Vol 4 (Suppl 3) ◽  
pp. A53.1-A53
Author(s):  
Armel V Ndong Mbouna ◽  
Selidji T Agnandji

BackgroundThe West Africa Ebola virus disease (EVD) outbreak between 2015 and 2016 accelerated the need for safe and effective vaccines. Among candidate vaccines in clinical development, the recombinant Vesicular stomatitis virus (VSV) vectored with the Ebola virus (EBOV) glycoprotein (rVSV-ZEBOV-GP) vaccine showed acceptable safety and promising immunogenicity results across diverse settings.Baseline screening data from the phase I trial of this vaccine in Lambaréné, Gabon, established that prior to vaccination about 21% (33/155) and 8% (12/155) of adults had naturally acquired antibodies to infectious ZEBOV particle and ZEBOV-GP, respectively. In participants with prior ZEBOV(-GP) antibodies, post-vaccination antibodies titres were significantly higher 56 days following vaccination with doses of 3×103, 3×104, and 3×106 PFU compared to those without.Our study seeks to investigate rVSV vector non-specific boosting of naturally acquired antibodies to other viral infections (dengue virus 1–4, and yellow fever virus).MethodsWe measured antibodies titres to Dengue (serotypes 1–4) and yellow fever infection at baseline, 28 and 56 days after injection in a total of 155 serum samples from vaccinees receiving various doses of rVSV-ZEBOV-GP using ELISA technique.ResultsPreliminary results were presented at the meeting.ConclusionOur results confirm rVSV vector non-specific replication on non ZEBOV-GP circulating antibodies in Lambaréné vaccinees and potential boosting action on naturally acquired dengue virus (serotypes 1–4) and yellow fever virus antibodies.


2017 ◽  
Vol 216 (9) ◽  
pp. 1164-1175 ◽  
Author(s):  
James H McLinden ◽  
Nirjal Bhattarai ◽  
Jack T Stapleton ◽  
Qing Chang ◽  
Thomas M Kaufman ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 520-533 ◽  
Author(s):  
Dieudonné Buh Kum ◽  
Robbert Boudewijns ◽  
Ji Ma ◽  
Niraj Mishra ◽  
Dominique Schols ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 425 ◽  
Author(s):  
Raphaëlle Klitting ◽  
Carlo Fischer ◽  
Jan Drexler ◽  
Ernest Gould ◽  
David Roiz ◽  
...  

As revealed by the recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America, YFV control measures need urgent rethinking. Over the last decade, most reported outbreaks occurred in, or eventually reached, areas with low vaccination coverage but that are suitable for virus transmission, with an unprecedented risk of expansion to densely populated territories in Africa, South America and Asia. As reflected in the World Health Organization’s initiative launched in 2017, it is high time to strengthen epidemiological surveillance to monitor accurately viral dissemination, and redefine vaccination recommendation areas. Vector-control and immunisation measures need to be adapted and vaccine manufacturing must be reconciled with an increasing demand. We will have to face more yellow fever (YF) cases in the upcoming years. Hence, improving disease management through the development of efficient treatments will prove most beneficial. Undoubtedly, these developments will require in-depth descriptions of YFV biology at molecular, physiological and ecological levels. This second section of a two-part review describes the current state of knowledge and gaps regarding the molecular biology of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.


Author(s):  
Raphaëlle Klitting ◽  
Ernest A. Gould ◽  
Christophe Paupy ◽  
Xavier de Lamballerie

The recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America has sparked renewed interest in this infamous arboviral disease. YFV had been a human plague for centuries prior to the identification of its urban transmission vector, the Aedes aegypti mosquito species, and the development of an efficient live-attenuated vaccine, the YF-17D strain. The combination of vector-control measures and vaccination campaigns drastically reduced YFV incidence in humans on many occasions, but the virus never ceased to circulate in the forest, through its sylvatic invertebrate vector(s) and vertebrate host(s). Outbreaks recently reported in Central Africa (2015-2016) and Brazil (since late 2016), reached considerable proportions in terms of spatial distribution and total numbers of cases, with multiple exports, including to China. In turn, questions regarding the likeliness of occurrence of large urban YFV outbreaks in the Americas or of a successful import of YFV to Asia are currently resurfacing. This two-part review describes the current state of knowledge and gaps regarding the molecular biology and transmission dynamics of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Yutong Song ◽  
JoAnn Mugavero ◽  
Charles B. Stauft ◽  
Eckard Wimmer

ABSTRACTTheFlavivirusgenus of theFlaviviridaefamily encompasses numerous enveloped plus-strand RNA viruses. Dengue virus (DENV), a flavivirus, is the leading cause of serious arthropod-borne disease globally. The genomes of DENV, like the genomes of yellow fever virus (YFV), West Nile fever virus (WNV), or Zika virus (ZIKV), control their translation by a 5′-terminal capping group. Three other genera ofFlaviviridaeare remarkable because their viruses use internal ribosomal entry sites (IRESs) to control translation, and they are not arthropod transmitted. In 2006, E. Harris’ group published work suggesting that DENV RNA does not stringently need a cap for translation. They proposed that instead DENV translation is controlled by an interplay between 5′ and 3′ termini. Here we present evidence that the DENV or ZIKV 5′ untranslated regions (5′-UTRs) alone have IRES competence. This conclusion is based, first, on the observation that uncapped monocistronic mRNAs 5′ terminated with the DENV or ZIKV 5′-UTRs can efficiently direct translation of a reporter gene in BHK and C6/36 cells and second, that either 5′-UTR placed between two reporter genes can efficiently induce expression of the downstream gene in BHK cells but not in C6/36 cells. These experiments followed observations that uncapped DENV/ZIKV genomic transcripts, 5′ terminated with pppAN… or GpppAN…, can initiate infections of mammalian (BHK) or mosquito (C6/36) cells. IRES competence of the 5′-UTRs of DENV/ZIKV raises many open questions regarding the biology and control, as well as the evolution, of insect-borne flaviviruses.IMPORTANCEMembers of the genusFlavivirusofFlaviviridaeare important human pathogens of great concern because they cause serious diseases, sometimes death, in human populations living in tropical, subtropical (dengue virus [DENV], Zika virus [ZIKV], and yellow fever virus), or moderate climates (West Nile virus). Flaviviruses are known to control their translation by a cap-dependent mechanism. We have observed, however, that the uncapped genomes of DENV or ZIKV can initiate infection of mammalian and insect cells. We provide evidence that the short 5′ untranslated region (5′-UTR) of DENV or ZIKV genomes can fulfill the function of an internal ribosomal entry site (IRES). This strategy frees these organisms from the cap-dependent mechanism of gene expression at an as yet unknown stage of proliferation. The data raise new questions about the biology and evolution of flaviviruses, possibly leading to new controls of flavivirus disease.


Sign in / Sign up

Export Citation Format

Share Document