Combination of Interleukin-11Rα chimeric antigen receptor T-cells and programmed death-1 blockade as an approach to targeting osteosarcoma cells In vitro

2017 ◽  
Vol 3 (4) ◽  
pp. 139
Author(s):  
HatelRana Moonat ◽  
Gangxiong Huang ◽  
Pooja Dhupkar ◽  
Keri Schadler ◽  
Nancy Gordon ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0166891 ◽  
Author(s):  
Kentaro Minagawa ◽  
Muhammad O. Jamil ◽  
Mustafa AL-Obaidi ◽  
Larisa Pereboeva ◽  
Donna Salzman ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


2021 ◽  
Author(s):  
Yannick D. Muller ◽  
Leonardo M.R. Ferreira ◽  
Emilie Ronin ◽  
Patrick Ho ◽  
Vinh Nguyen ◽  
...  

Infusion of regulatory T cells (Tregs) engineered with a chimeric antigen receptor (CAR) targeting donor-derived human leukocyte antigen (HLA) is a promising strategy to promote transplant tolerance. Here, we describe an anti-HLA-A2 CAR (A2-CAR) generated by grafting the complementarity-determining regions (CDRs) of a human monoclonal anti-HLA-A2 antibody into the framework regions of the Herceptin 4D5 single-chain variable fragment and fusing it with a CD28-zeta signaling domain. The CDR-grafted A2-CAR maintained the specificity of the original antibody. We then generated HLA-A2 mono-specific human CAR Tregs either by deleting the endogenous T-cell receptor (TCR) via CRISPR/Cas9 and introducing the A2-CAR using lentiviral transduction or by directly integrating the CAR construct into the TCR alpha constant locus using homology-directed repair. These A2-CAR+TCRdeficient human Tregs maintained both Treg phenotype and function in vitro. Moreover, they selectively accumulated in HLA-A2-expressing islets transplanted from either HLA-A2 transgenic mice or deceased human donors. A2-CAR+TCRdeficient Tregs did not impair the function of these HLA-A2+ islets, whereas similarly engineered A2-CAR+TCRdeficientCD4+ conventional T cells rejected the islets in less than 2 weeks. A2-CAR+TCRdeficient Tregs delayed graft-versus-host disease only in the presence of HLA-A2, expressed either by co-transferred peripheral blood mononuclear cells or by the recipient mice. Altogether, we demonstrate that genome-engineered mono-antigen-specific A2-CAR Tregs localize to HLA-A2-expressing grafts and exhibit antigen-dependent in vivo suppression, independent of TCR expression. These approaches may be applied towards developing precision Treg cell therapies for transplant tolerance.


2019 ◽  
Vol Volume 12 ◽  
pp. 9341-9350 ◽  
Author(s):  
Xiaojun Tang ◽  
Qi Tang ◽  
Yuan Mao ◽  
Xiaochen Huang ◽  
Lizhou Jia ◽  
...  

2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Matthew T. Ollerton ◽  
Edward A. Berger ◽  
Elizabeth Connick ◽  
Gregory F. Burton

ABSTRACT The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought. IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro. Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.


2021 ◽  
Author(s):  
Katherine Mueller ◽  
Nicole Piscopo ◽  
Matthew Forsberg ◽  
Louise Saraspe ◽  
Amritava Das ◽  
...  

Chimeric antigen receptor (CAR) T cells traditionally harbor viral vectors that encode the CAR transgene in the genome. However, viral vector manufacturing typically is resource intensive, suffers from batch-to-batch variability, and includes several animal components, adding regulatory and supply chain pressures. Here, CAR T cells were generated within nine days using recombinant SpCas9 protein and nucleic acids, without any viral vectors or animal components. In comparison to traditional retroviral CAR T cells, nonviral CRISPR CAR T cells exhibit TRAC-targeted genomic integration of the CAR transgene, higher frequency of gene expression signatures associated with a memory phenotype, low receptor signaling prior to infusion, and potent cytotoxicity against GD2+ neuroblastoma in vitro and in vivo. This proof-of-principle study eliminating viral vectors and animal components during CAR gene transfer could enable more flexible and scalable manufacturing of clinically-relevant, high-quality CAR T cells to treat cancers, including solid tumors.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 150-150
Author(s):  
Sergei Kusmartsev ◽  
Johaness Vieweg ◽  
Victor Prima

150 Background: NKG2D is a lectin-like type 2 transmembrane receptor that expressed by natural killer cells and some T cell subsets. Stimulation of NKG2D receptor with specific agonistic ligands produces activating signals through signaling adaptor protein DAP10 leading to the enhanced cytokine production, proliferation, and cytotoxicity against tumor cells. There is strong evidence that NKG2D ligands are expressed in many human tumors, including melanoma, leukemia, myeloma, glioma, and carcinomas of the prostate, breast, lung, and colon. Recent studies also demonstrated that T cells bearing chimeric antigen receptor (CAR) NKG2D linked to CD3ζ (zeta) chain produce marked in vitro and in vivo anti-tumor effects. The aim of current study was to determine whether human T cells bearing chimeric antigen receptor (CAR) NKGD2 linked to CD3ε (epsilon) chain could be activated by the NKG2D-specific stimulation and able to kill human cancer cells. Given the important role of CD3ε in activation and survival of T cells, we hypothesized that NKG2D-CDε-bearing T cells could exert strong in vitro and in vivo anti-tumor effects. Methods: NKG2D CAR was produced by linking human NKG2D to DAP10 and the cytoplasmic portion of the CD3ε chain. Original full-length human cDNA clones were obtained from NIH Mammalian Gene Collection (MGC). Functional domain analysis and oligonucleotide design in the in-Fusion system of DNA cloning (Clontech) was used to generate the retroviral expression constructs. Results: Human PBMC-derived T cells were retrovirally transduced with newly generated NKG2D-CD3ε CAR DNA construct. These NKG2D CAR-expressing human T cells responded to NKG2D-specific activation by producing IFN-γ and exhibited significant cellular cytotoxicity against human tumor cells in vitro. In vivo studies demonstrated that NKG2D-CD3ε-bearing cells are capable of inhibiting growth of DU-145 human prostate cancer in the immunodeficient mice. Conclusions: Collectively, our data indicate the feasibility of developing chimeric antigen receptor NKG2D-CD3ε for T cells and suggest that adoptive transfer of T cells bearing NKG2D-CD3ε CAR could be potentially effective for immunotherapy of cancer patients.


Sign in / Sign up

Export Citation Format

Share Document