scholarly journals Supraglottic jet oxygenation and ventilation – A novel ventilation technique

2020 ◽  
Vol 64 (1) ◽  
pp. 11 ◽  
Author(s):  
Sushan Gupta
2020 ◽  
Vol 14 (3) ◽  
pp. 7109-7124
Author(s):  
Nasreddine Sakhri ◽  
Younes Menni ◽  
Houari Ameur ◽  
Ali J. Chamkha ◽  
Noureddine Kaid ◽  
...  

The wind catcher or wind tower is a natural ventilation technique that has been employed in the Middle East region and still until nowadays. The present paper aims to study the effect of the one-sided position of a wind catcher device against the ventilated space or building geometry and its natural ventilation performance. Four models based on the traditional design of a one-sided wind catcher are studied and compared. The study is achieved under the climatic conditions of the South-west of Algeria (arid region). The obtained results showed that the front and Takhtabush’s models were able to create the maximum pressure difference (ΔP) between the windward and leeward of the tower-house system. Internal airflow velocities increased with the increase of wind speed in all studied models. For example, at Vwind = 2 m/s, the internal flow velocities were 1.7, 1.8, 1.3, and 2.5 m/s for model 1, 2, 3, and 4, respectively. However, at Vwind = 6 m/s, the internal flow velocities were 5.6, 5.5, 2.5, and 7 m/s for model 1, 2, 3, and 4, respectively. The higher internal airflow velocities are given by Takhtabush, traditional, front and middle tower models, respectively, with a reduction rate between the tower outlet and occupied space by 72, 42, 36, and 33% for the middle tower, Takhtabush, traditional tower, and the front model tower, respectively. This reduction is due to the due to internal flow resistance. The third part of the study investigates the effect of window (exist opening) position on the opposite wall. The upper, middle and lower window positions are studied and compared. The air stagnation or recirculation zone inside the ventilated space reduced from 55% with the lower window to 46% for the middle window and reached 35% for the upper window position. The Front and Takhtabush models for the one-sided wind catcher with an upper window position are highly recommended for the wind-driven natural ventilation in residential houses that are located in arid regions.


Author(s):  
Patricia Lengua Hinojosa ◽  
Frank Eifinger ◽  
Michael Wagner ◽  
Jochen Herrmann ◽  
Monika Wolf ◽  
...  

Abstract Background Medical simulation training requires realistic simulators with high fidelity. This prospective multi-center study investigated anatomic precision, physiologic characteristics, and fidelity of four commercially available very low birth weight infant simulators. Methods We measured airway angles and distances in the simulators Premature AirwayPaul (SIMCharacters), Premature Anne (Laerdal Medical), Premie HAL S2209 (Gaumard), and Preterm Baby (Lifecast Body Simulation) using computer tomography and compared these to human cadavers of premature stillbirths. The simulators’ physiologic characteristics were tested, and highly experienced experts rated their physical and functional fidelity. Results The airway angles corresponded to those of the reference cadavers in three simulators. The nasal inlet to glottis distance and the mouth aperture to glottis distance were only accurate in one simulator. All simulators had airway resistances up to 20 times higher and compliances up to 19 times lower than published reference values. Fifty-six highly experienced experts gave three simulators (Premature AirwayPaul: 5.1 ± 1.0, Premature Anne 4.9 ± 1.1, Preterm Baby 5.0 ± 1.0) good overall ratings and one simulator (Premie HAL S2209: 2.8 ± 1.0) an unfavorable rating. Conclusion The simulator physiology deviated significantly from preterm infants’ reference values concerning resistance and compliance, potentially promoting a wrong ventilation technique. Impact Very low birth weight infant simulators showed physiological properties far deviating from corresponding patient reference values. Only ventilation with very high peak pressure achieved tidal volumes in the simulators, as aimed at in very low birth weight infants, potentially promoting a wrong ventilation technique. Compared to very low birth weight infant cadavers, most tested simulators accurately reproduced the anatomic angular relationships, but their airway dimensions were relatively too large for the represented body. The more professional experience the experts had, the lower they rated the very low birth weight infant simulators.


2018 ◽  
Vol 4 (7) ◽  
pp. 1521 ◽  
Author(s):  
Fang Lin

Construction ventilation system is divided into two stages based on completion status of shafts in the underground petroleum storage project in Jinzhou, China. With the help of theoretical analysis and numerical simulations by using FLUENT software, in the first stage, reasonable construction ventilation is designed and cases with different outside temperature are discussed to investigate the effect of ventilation performance. It is found that with temperature difference increases, peak value of CO concentration, exhausting time of dirty air and required time to meet the CO concentration qualification decrease, but the influence degree is quite limited. Gallery-type network ventilation technique (GNVT) refined from theories of operation ventilation for road tunnel and mining ventilation network, is proposed to conduct the second stage construction ventilation. Ventilation performance of different ventilation schemes with various shafts’ states and diverse arrangements of fans are also analyzed in this study. It turns out that Axial-GNVT with shafts taking in fresh air and access tunnel ejecting dirty air has much better performance than traditional forced ventilation from access tunnel. Improved energy saving scheme is finally adopted to guide the construction. In addition, it is worth mentioning that there is no need to build middle ventilation shafts and construct shafts as large and long as possible. Field test of wind speed, dust, poisonous gas, atmospheric pressure, temperature are performed to detect ventilation effectiveness. Reduction coefficient =0.69is obtained from the test results in consideration of super-large section and it also indicates that there is no difference if the axial fan is at the shaft mouth or in the bottom.


2011 ◽  
Vol 46 (2) ◽  
pp. 117-125 ◽  
Author(s):  
J. Scott Delaney ◽  
Ammar Al-Kashmiri ◽  
Penny-Jane Baylis ◽  
Tracy Troutman ◽  
Mahmood Aljufaili ◽  
...  

Abstract Context: Managing an airway in an unconscious athlete is a lifesaving skill that may be made more difficult by the recent changes in protective equipment. Different airway maneuvers and techniques may be required to help ventilate an unconscious athlete who is wearing full protective equipment. Objective: To assess the effectiveness of different airway maneuvers with football, ice hockey, and soccer players wearing full protective equipment. Design: Crossover study. Setting: University sports medicine clinic. Patients or Other Participants: A total of 146 university varsity athletes, consisting of 62 football, 45 ice hockey, and 39 soccer players. Intervention(s): Athletes were assessed for different airway and physical characteristics. Three investigators then evaluated the effectiveness of different bag-valve-mask (BVM) ventilation techniques in supine athletes who were wearing protective equipment while inline cervical spine immobilization was maintained. Main Outcome Measure(s): The effectiveness of 1-person BVM ventilation (1-BVM), 2-person BVM ventilation (2-BVM), and inline immobilization and ventilation (IIV) was judged by each investigator for each athlete using a 4-point rating scale. Results: All forms of ventilation were least difficult in soccer players and most difficult in football players. When compared with 1-BVM, both 2-BVM and IIV were deemed more effective by all investigators for all athletes. Interference from the helmet and stabilizer were common reasons for difficult ventilation in football and ice hockey players. Conclusions: Sports medicine professionals should practice and be comfortable with different ventilation techniques for athletes wearing full equipment. The use of a new ventilation technique, termed inline immobilization and ventilation, may be beneficial, especially when the number of responders is limited.


2014 ◽  
Vol 61 (4) ◽  
pp. 169-170
Author(s):  
Takuro Sanuki ◽  
Toshihiro Watanabe ◽  
Yu Ozaki ◽  
Mizuki Tachi ◽  
Kensuke Kiriishi ◽  
...  

Abstract Mask ventilation, along with tracheal intubation, is one of the most basic skills for managing an airway during anesthesia. Facial anomalies are a common cause of difficult mask ventilation, although numerous other factors have been reported. The long and narrow mandible is a commonly encountered mandibular anomaly. In patients with a long and narrow mandible, the gaps between the corners of the mouth and the lower corners of the mask are likely to prevent an adequate seal and a gas leak may occur. When we administer general anesthesia for these patients, we sometimes try to seal the airway using several sizes and shapes of commercially available face masks. We have found that the management of the airway for patients with certain facial anomalies may be accomplished by attaching a mask upside down.


2014 ◽  
Vol 42 (6) ◽  
pp. 789-792 ◽  
Author(s):  
N. F. Collins ◽  
L. Ellard ◽  
E. Licari ◽  
E. Beasley ◽  
S. Seevanayagam ◽  
...  

The use of extracorporeal membrane oxygenation (ECMO) for elective thoracic surgical procedures has been infrequently reported in the anaesthetic literature. We report the use of intraoperative veno-venous ECMO support for a patient with a previous left pneumonectomy who required a right-sided thoracotomy for repair of a tracheo-oesophageal fistula. To avoid traumatising or pressurising the fistula, a spontaneous ventilation technique was used prior to intubation with a single-lumen endotracheal tube positioned above the level of the fistula. The ECMO cannulas were inserted after induction and ECMO was instituted prior to transfer to the lateral position. Oxygenation during ECMO was augmented with apnoeic oxygen delivery via the breathing circuit. This was associated with an increase in the oxygen saturations from 80% to 99% without compromising surgical access. The use of apnoeic oxygenation via the breathing circuit significantly improved gas exchange in this case and should be considered as an adjunct to veno-venous ECMO.


Sign in / Sign up

Export Citation Format

Share Document