scholarly journals Effect of mechanical alteration of enamel surface on shear bond strength of different bonding techniques

2020 ◽  
Vol 23 (2) ◽  
pp. 141
Author(s):  
Janvi Talan ◽  
Sachin Gupta ◽  
Vineeta Nikhil ◽  
Shikha Jaiswal
2020 ◽  
Vol 38 (3) ◽  
pp. 160-166 ◽  
Author(s):  
Thomas Knaup ◽  
Heike Korbmacher-Steiner ◽  
Andreas Braun ◽  
Johannes-Simon Wenzler ◽  
Isabel Knaup ◽  
...  

Author(s):  
Tubayesha Hassan ◽  
MH Sattar

As a means of regular practice in orthodontics and aesthetic dentistry, resin based adhesive systems are being used exclusively. Keeping up with the ever-increasing demand for aesthetic dental treatment all over the world, newer and more improved adhesive systems have been developed. However, regarding the comparison as to which bonding system performs better in clinical perspective, there is lack of existing scientific review articles. In this review, we tend to explore the conventional etch and rinse bonding system and the self-etch primer bonding system. The different tests to assess and compare bond strength between these two types of adhesives from various bibliography are discussed. The results of shear bond strength test, adhesive remnant index (ARI), enamel-adhesive interface using scanning electron microscope (SEM) and the effect of saliva contamination and time are discussed. Interestingly, each system has its strengths and weaknesses. In shear bond strength, self-etch bonding systems clearly exhibits less strength than conventional bonding systems. Resin tags into enamel surface are shorter in self-etch primer adhesives which results from milder etching to enamel compared to the conventional aid-etch and rinse adhesives. Contrarily, the irreversible changes to enamel surface is more aggressive in conventional acid-etching which states that self-etching systems are better according to the principles of minimal intervention dentistry. Ban J Orthod & Dentofac Orthop, April 2017; Vol-7 (1-2), P.20-26


2007 ◽  
Vol 77 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Güvenç Basaran ◽  
Törün Özer ◽  
Nükhet Berk ◽  
Orhan Hamamcı

Abstract Objective: To test the shear bond strength, surface characteristics, and fracture mode of brackets that are bonded to enamel etched with an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser operated at different power outputs: 0.5 W, 1 W, and 2 W. Materials and Methods: Human premolars that had been extracted for orthodontic purposes were used. Enamel was etched with an Er,Cr:YSGG laser system operated at one of three power outputs or with orthophosphoric acid. Results: The shear bond strength associated with the 0.5-W laser irradiation was significantly less than the strengths obtained with the other irradiations. Both the 1-W and 2-W laser irradiations were capable of etching enamel in the same manner. This finding was confirmed by scanning electron microscopy examination. The evaluation of adhesive-remnant-index scores demonstrated no statistically significant difference in bond failure site among the groups, except for the 0.5-W laser–etched group. Generally, more adhesive was left on the enamel surface with laser irradiation than with acid etching. Conclusion: The mean shear bond strength and enamel surface etching obtained with an Er,Cr: YSGG laser (operated at 1 W or 2 W for 15 seconds) is comparable to that obtained with acid etching.


2018 ◽  
Vol 29 (2) ◽  
pp. 128-132 ◽  
Author(s):  
Gabriela Cristina Santin ◽  
Alexandra Mussolino de Queiroz ◽  
Regina Guenka Palma-Dibb ◽  
Harley Francisco de Oliveira ◽  
Paulo Nelson Filho ◽  
...  

Abstract Patients undergoing radiotherapy treatment present more susceptibility to dental caries and the use of an orthodontic device increases this risk factor due to biofilm accumulation around the brackets. The objective of this study was to evaluate the shear bond strength to irradiated permanent teeth of orthodontic brackets bonded with conventional glass ionomer cement and resin-modified glass ionomer cement due to the fluoride release capacity of these materials. Ninety prepared human premolars were divided into 6 groups (n=15), according to the bonding material and use or not of radiation: CR: Transbond XT composite resin; RMGIC: Fuji Ortho LC conventional glass ionomer cement; GIC: Ketac Cem Easymix resin-modified glass ionomer cement. The groups were irradiated (I) or non-irradiated (NI) prior to bracket bonding. The specimens were subjected to a fractioned radiation dose of 2 Gy over 5 consecutive days for 6 weeks. After the radiotherapy, the brackets were bonded on the specimens with Transbond XT, Fuji Ortho LC and Ketac Cem Easymix. After 24 h, the specimens were subjected to shear bond strength test. The image of enamel surface (classified by Adhesive Remnant Index - ARI) was also evaluated and its frequency was checked among groups/subgroups. The shear bond strength variable was evaluated with ANOVA and Tukey’s post-hoc test. GIC group showed the lowest adhesion values among the groups (p<0.05). There was no statistically significant difference among non-irradiated and irradiated groups (p>0.05). As for the ARI, the CR-I group showed the highest material retention on enamel surface among the irradiated groups. RMGIC group showed the highest values for shear bond strength and presented ARI acceptable for clinical practices.


2014 ◽  
Vol 19 (1) ◽  
pp. 77-85 ◽  
Author(s):  
José Maurício da Rocha ◽  
Marco Abdo Gravina ◽  
Marcio José da Silva Campos ◽  
Cátia Cardoso Abdo Quintão ◽  
Carlos Nelson Elias ◽  
...  

OBJECTIVE: To evaluate, in vitro, the shear bond strength presented by three brands of polycrystalline ceramic brackets and one brand of metallic bracket; verify the adhesive remnant index (ARI) after the tests, and analyze, through scanning electron microscopy (SEM) the enamel surface topography after debonding, detecting the release of mineral particles. METHODS: Sixty bovine lower incisors were used. Three ceramic brackets (Allure(r), InVu(r), and Clarity(r)) and one metallic bracket (Geneus(r)) were bonded with Transbond XT(r). Kruskal-Wallis's test (significance level set at 5%) was applied to the results of share bond and ARI. Mann Whitney's test was performed to compare the pairs of brackets in relation to their ARI. Brown-Forsythe's test (significance level set at 5%) was applied to the results of enamel chemical composition. Comparisons between groups were made with Games-Howell's and the Post-hoc tests. RESULTS: No statistically significant difference was observed in relation to the shear bond strength loads. Clarity(r) brackets were the most affected in relation to the surface topography and to the release of mineral particles of enamel (calcium ions). CONCLUSION: With regard to the ARI, there was a prevalence of score 4 (40.4%). As for enamel surface topography, the Geneus(r) bracket was the only one which did not show superficial tissue loss. The InVu(r) and Clarity(r) ones showed cohesive fractures in 33.3% and the Allure(r) in 50%, the latter being the one that presented most fractures during removal.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yomna A. Nabawy ◽  
Tarek N. Yousry ◽  
Nadia M. El-Harouni

Abstract Background Increased risk of enamel demineralization during and after orthodontic treatment raises the demand for better preventive measures including combinations of laser, CPP-ACP, and fluoride. The combination of Er,Cr:YSGG laser with CPP-ACP was proved to have a synergetic effect compared to each of them alone. Shear bond strength (SBS) of orthodontic brackets bonded to the enamel surface after being treated with preventive measures is critical. The aim of this study was to compare the SBS and failure mode of metallic brackets bonded to teeth with no pretreatment and pretreated enamel surface, either with Er,Cr:YSGG laser alone or combined with CPP-ACP. Methods Sixty sound extracted human premolar teeth were allocated randomly to 3 groups: In Group 1 (control), teeth were etched and bonded directly; in Group 2, laser pretreatment of the enamel surface was done followed by etching and bonding as in the control group; in Group 3, the enamel surface was lased then CPP-ACP was applied according to the manufacturer instructions, etched and bonded. SBS and Adhesive remnant index (ARI) were evaluated. Results No significant differences were found between the 3 groups neither in the SBS nor in the ARI scores. Conclusions The use of combined Er,Cr:YSGG laser with CPP-ACP as a preventive measure before bonding orthodontic brackets does not endanger the bracket’s bonding strength.


2010 ◽  
Vol 35 (2) ◽  
pp. 187-193 ◽  
Author(s):  
M. Khoroushi ◽  
M. Tavasoli

Clinical Relevance TCA gel etches enamel surfaces and produces surface morphological characteristics and bond strength similar to that produced by phosphoric acid. When TCA is used as a hemostatic agent on marginal gingiva, its inadvertent contact with enamel improves the immediate bond strength of resin composite to enamel. However, when using phosphoric acid and 50% TCA, an erosive enamel surface is produced.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Maria Francesca Sfondrini ◽  
Danilo Fraticelli ◽  
Paola Gandini ◽  
Andrea Scribante

Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons.Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores).Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions.Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.


2010 ◽  
Vol 137 (3) ◽  
pp. 375-378 ◽  
Author(s):  
Mostafa Shahabi ◽  
Farzin Heravi ◽  
Nima Mokhber ◽  
Reza Karamad ◽  
Samir E. Bishara

Sign in / Sign up

Export Citation Format

Share Document