Whole exome sequencing analysis identifies a missense variant in COL1A2 gene which causes osteogenesis imperfecta Type IV in a family from Saudi Arabia

2017 ◽  
Vol 1 (2) ◽  
pp. 33 ◽  
Author(s):  
Musharraf Jelani ◽  
YaserM Alkhiary ◽  
Anum Ramzan ◽  
Muhammad Ilyas ◽  
Ubaidullah Khan ◽  
...  
JBMR Plus ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 235-239 ◽  
Author(s):  
Zixue Jin ◽  
Lindsay C Burrage ◽  
Ming-Ming Jiang ◽  
Yi-Chien Lee ◽  
Terry Bertin ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Amjad Khan ◽  
Rongrong Wang ◽  
Shirui Han ◽  
Muhammad Umair ◽  
Safdar Abbas ◽  
...  

Abstract Background Limb-girdle muscular dystrophies (LGMDs) are large group of heterogeneous genetic diseases, having a hallmark feature of muscle weakness. Pathogenic mutations in the gene encoding the giant skeletal muscle protein titin (TTN) are associated with several muscle disorders, including cardiomyopathy, recessive congenital myopathies and limb-girdle muscular dystrophy (LGMD) type10. The phenotypic spectrum of titinopathies is expanding, as next generation sequencing (NGS) technology makes screening of this large gene possible. Aim This study aimed to identify the pathogenic variant in a consanguineous Pakistani family with autosomal recessive LGMD type 10. Methods DNA from peripheral blood samples were obtained, whole exome sequencing (WES) was performed and several molecular and bioinformatics analysis were conducted to identify the pathogenic variant. TTN coding and near coding regions were further amplified using PCR and sequenced via Sanger sequencing. Results Whole exome sequencing analysis revealed a novel homozygous missense variant (c.98807G > A; p.Arg32936His) in the TTN gene in the index patients. No heterozygous individuals in the family presented LGMD features. The variant p.Arg32936His leads to a substitution of the arginine amino acid at position 32,936 into histidine possibly causing LGMD type 10. Conclusion We identified a homozygous missense variant in TTN, which likely explains LGMD type 10 in this family in line with similar previously reported data. Our study concludes that WES is a successful molecular diagnostic tool to identify pathogenic variants in large genes such as TTN in highly inbred population.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A209-A209
Author(s):  
Junyu He ◽  
Zhihong Liao

Abstract Background: Osteogenesis imperfecta (OI) is a rare hereditary connective tissue disease. It is mainly associated with pathogenic variants in COL1A1 or COL1A2. Patients with OI usually have repeated history of bone fractures. Besides, osteogenesis imperfecta is associated with some cardiovascular complications, such as aortic and mitral valve dysfunction, aneurysm and aortic dissection. But the relationship between these diseases has not been well studied. Case Presentation: A 55-year-old man was admitted to our hospital mainly due to “dizziness for 2 hours”. He had a 4-month history of hypertension and a history of smoking for more than 20 years. He had no history of drinking alcohol. He had hunchback and O-type legs. Besides, the patient and some of his relatives had a history of repeated brittle fractures,which was considered as “osteogenesis imperfecta”. The clinical manifestation of OI in this family varies to a certain extent, from simple tooth disintegration to severe fracture deformity. The most serious patient of his family was unable to walk. CT and MRI revealed multiple systemic arteriosclerosis, including vertebral artery, posterior inferior cerebellar artery, cervical artery, and bilateral cerebellar multiple lacunar cerebral infarction. The blood sample of the patient was tested by whole exome sequencing, and the saliva samples of the patient’s family members were tested by Sanger sequencing. A mutation c.3159 + 2T > A was detected in COL1A2 gene associated with OI, also found in the other affected family members, which had not been reported before. It was a segregating mutation in the family. The clinical severity of the family members was heterogeneous. Discussion: This case is worth learning from the following aspects: 1. A pathogenic heterozygous mutation, c.3159 + 2T > A was detected in COL1A2 gene in the patient with OI, which is not reported in previous cases of OI. 2. The clinical manifestation of OI in this family varies to a certain extent, from simple tooth disintegration to severe fracture deformity. The most serious patient of his family was unable to walk. It presented the clinical heterogeneity of OI. Further basic researh on the mutation site of related gene of OI are needed. 3. We found the possibility of developing cerebral atherosclerosis in patients with OI. Therefore, patients with OI should give up smooking, exercise properly and keep on a low fat diet. They should pay attention to control blood pressure and blood lipid so as to reduce the risk of atherosclerosis. Conclusion: A c.3159 + 2T>A mutation in COL1A2 gene detected by whole exome sequencing was the causing reason of OI, the discovery enriched the gene mutation spectrum of OI. We also found that OI may have relationship with premature atherosclerosis, and the abnormal bones of the cervical spine may lead to vertebrobasilar ischemia.


2021 ◽  
Author(s):  
Hanifeh Mirtavoos-Mahyari ◽  
Sanaz Ajami ◽  
Amirhosein Mehrtash ◽  
Seyedeh Mahya Marashiyan ◽  
Farbod Bahreini ◽  
...  

Abstract BackgroundFibrochondrogenesis 1, an autosomal recessive syndrome, is an infrequent and rare disease, causing short-limbed skeletal dysplasia. This syndrome is clinically characterized and distinguished by a small nose and anteverted bares, flat midface, shortened long bones, and a protuberant abdomen. Mutations in the gene encoding the α1 chain of type XI collagen (COL11A1) are seen to be the main cause of this disease.Case PresentationWe present an 18-week Iranian male aborted fetus with Fibrochondrogenesis 1 from consanguineous parents. Whole-exome sequencing (WES) revealed a novel missense variant from G to A in exon 45 of 68 in the COL11A1 gene (NM_080629.2: c.3440G>A, [p.G1147E, g.103404625]). The mutation was confirmed by Sanger sequencing and further, MutationTaster predicted this variant to be disease-causing.ConclusionBioinformatic analysis suggests that this variant is highly conserved in both nucleotide and protein levels, suggesting that it has an important function in the proper role of COL11A1 protein. In-silico analysis suggests that this mutation alters the COL11A1 protein structure through a Glycine to Glutamic acid substitution. This is a novel mutation and a rare variant as this variant is not reported in gmomAD, ExAC, or 1000 genome databases.To the best of the authors’ knowledge, this is the first study to report a novel pathogenic mutation in COL11A1 in association with Fibrochondrogenesis 1. Therefore, we suggest that WES can be used as a robust method to achieve rapid diagnosis and identification of pathogenic and novel mutations in patients.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Xu ◽  
Yong-Biao Zhang ◽  
Li-Jun Liang ◽  
Jia-Li Tian ◽  
Jin-Ming Lin ◽  
...  

Abstract Background Hereditary hemorrhagic telangiectasia (HHT) is a disease characterized by arteriovenous malformations in the skin and mucous membranes. We enrolled a large pedigree comprising 32 living members, and screened for mutations responsible for HHT. Methods We performed whole-exome sequencing to identify novel mutations in the pedigree after excluding three previously reported HHT-related genes using Sanger sequencing. We then performed in silico functional analysis of candidate mutations that were obtained using a variant filtering strategy to identify mutations responsible for HHT. Results After screening the HHT-related genes, activin A receptor-like type 1 (ACVRL1), endoglin (ENG), and SMAD family member 4 (SMAD4), we did not detect any co-segregated mutations in this pedigree. Whole-exome sequencing analysis of 7 members and Sanger sequencing analysis of 16 additional members identified a mutation (c.784A > G) in the NSF attachment protein gamma (NAPG) gene that co-segregated with the disease. Functional prediction showed that the mutation was deleterious and might change the conformational stability of the NAPG protein. Conclusions NAPG c.784A > G may potentially lead to HHT. These results expand the current understanding of the genetic contributions to HHT pathogenesis.


Author(s):  
Bixia Zheng ◽  
Steve Seltzsam ◽  
Chunyan Wang ◽  
Luca Schierbaum ◽  
Sophia Schneider ◽  
...  

Abstract Background Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidney, may also represent monogenic causes of CAKUT. Methods We here performed whole exome sequencing (WES) in 541 families with CAKUT and generated 4 lists of CAKUT candidate genes: A) 36 FOX genes showing high expression during renal development, B) 4 FOX genes known to cause CAKUT to validate list A; C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families, and D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. Results To prioritize potential novel CAKUT candidates in FOX gene family, we overlapped 36 FOX genes (list A) with list C and D of WES-derived CAKUT candidates. Intersection with list C, identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D, identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. Conclusion We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.


2017 ◽  
Vol 176 (5) ◽  
pp. K9-K14 ◽  
Author(s):  
Sandrine Caburet ◽  
Ronit Beck Fruchter ◽  
Bérangère Legois ◽  
Marc Fellous ◽  
Stavit Shalev ◽  
...  

Context PCOS is a heterogeneous condition characterized by hyperandrogenism and chronic anovulation and affects about 10% of women. Its etiology is poorly known, but a dysregulation of gonadotropin secretion is one of its hallmarks. Objective As the etiology of PCOS is unclear, we have performed a genome-wide analysis of a consanguineous family with three sisters diagnosed with PCOS. Methods Whole-exome sequencing and Sanger sequencing confirmation. Results Whole-exome sequencing allowed the detection of the missense variant rs104893836 located in the first coding exon of the GNRHR gene and leading to the p.Gln106Arg (p.Q106R) substitution. Sanger sequencing of all available individuals of the family confirmed that the variant was homozygous in the three affected sisters and heterozygous in both parents. Conclusions This is the first description of a GNRHR gene mutation in patients diagnosed with PCOS. Although we do not exclude a possible interaction of the identified variant with the genetic background and/or the environment, our result suggests that genetic alterations in the hypothalamo–pituitary axis may play role in the pathogenesis of PCOS.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Keiichi Akizuki ◽  
Masaaki Sekine ◽  
Yasunori Kogure ◽  
Takuro Kameda ◽  
Kotaro Shide ◽  
...  

Abstract Background The occurrence of a mediastinal germ cell tumor (GCT) and hematological malignancy in the same patient is very rare. Due to its rarity, there have been only two reports of the concurrent cases undergoing detailed genetic analysis with whole-exome sequencing (WES), and the possible clonal relationship between the both tumors remained not fully elucidated. Methods We performed whole-exome sequencing analysis of mediastinal GCT and acute myeloid leukemia (AML) samples obtained from one young Japanese male adult patient with concurrent both tumors, and investigated the possible clonal relationship between them. Results Sixteen somatic mutations were detected in the mediastinal GCT sample and 18 somatic mutations in the AML sample. Mutations in nine genes, including TP53 and PTEN both known as tumor suppressor genes, were shared in both tumors. Conclusions All in our case and in the previous two cases with concurrent mediastinal GCT and AML undergoing with whole-exome sequencing analysis, TP53 and PTEN mutations were commonly shared in both tumors. These data not only suggest that these tumors share a common founding clone, but also indicate that associated mediastinal GCT and AML harboring TP53 and PTEN mutations represent a unique biological entity.


Sign in / Sign up

Export Citation Format

Share Document