scholarly journals An Investigation of Performance Analysis of Anomaly Detection Techniques for Big Data in SCADA Systems

Author(s):  
Mohiuddin Ahmed ◽  
Adnan Anwar ◽  
Abdun Naser Mahmood ◽  
Zubair Shah ◽  
Michael J. Maher
Author(s):  
Manjunatha HC ◽  
Mohanasundaram R

In today's world, most of the people are using social networks for day-to-day activities. The most frequently used social sites are Facebook, Twitter, Google+, etc. These popular social networks are used by some of the users for abnormal or illegal activities. It is very important and necessary to identify and avoid such illegal activities without harming anyone in the society. In recent decades, social networks are becoming a popular research area for most researchers. Many authors are doing research on social network datasets and proposing various anomaly detection mechanisms to identify anomalous activities in both static and dynamic growing social networks. Various anomaly detection techniques are proposed by the authors to investigate malicious activities in social networks. In general, the process of identifying anomaly activities of the users in the given dataset is called anomaly detection. The anomaly detection in social networks is the process of investigating whether the users of the given social networks are involved in illegal activities or not. In this work, we proposed a most elegant approach to identify the anomalous or outlier users in the given social network. The proposed approach is considering the users participated in multiple communities of social networks. The designed algorithms are implemented and tested in a big data environment three node cluster using open source Hadoop ecosystem tools. Algorithm1 is used to investigate the nodes/users who participated in multiple communities of the given social network’s dataset. Algorithm2 takes the set of users participated in multiple communities and apply graph metrics such as degree and community score to predict the users involved in the anomalous activity.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Srikanth Thudumu ◽  
Philip Branch ◽  
Jiong Jin ◽  
Jugdutt (Jack) Singh

Nowadays, the internet and network service user’s counts are increasing and the data generation speed also very high. Then again, we see greater security dangers on the internet, enterprise network, websites and the network. Anomaly has been known as one of the effective cyber threats over the internet which increasing exponentially and thus overcomes the commonly used approaches for anomaly detection and classification. Anomaly detection is used in big data analytics to recognize the unexpected behaviour. The most commonly used characteristics in network environment are size and dimensionality, which are big datasets and also impose problems in recognizing useful patterns, For example, to identify the network traffic anomalies from the large datasets. Due to the enormous increase of computer network based facilities it is a challenge to perform fast and efficient anomaly detection. The anomaly recognition in big data sets is more useful to discover fraud and abnormal action. Here, we mainly focus on the problems regarding anomaly detection, so we introduce a novel machine learning based anomaly detection technique. Machine learning approach is used to enhance the anomaly detection speed which is very much useful to detect the anomaly from the large datasets. We evaluate the proposed framework by performing experiments with larger data sets and compare to several existing techniques such as fuzzy, SVM (Support Vector Machine) and PSO (Particle swarm optimization). It has shown 98% percentage of accuracy and the false rate of 0.002 % on proposed classifier. The experimental results illuminate that better performance than existing anomaly detection techniques in big data environment.


2021 ◽  
Vol 12 (2) ◽  
pp. 1-18
Author(s):  
Jessamyn Dahmen ◽  
Diane J. Cook

Anomaly detection techniques can extract a wealth of information about unusual events. Unfortunately, these methods yield an abundance of findings that are not of interest, obscuring relevant anomalies. In this work, we improve upon traditional anomaly detection methods by introducing Isudra, an Indirectly Supervised Detector of Relevant Anomalies from time series data. Isudra employs Bayesian optimization to select time scales, features, base detector algorithms, and algorithm hyperparameters that increase true positive and decrease false positive detection. This optimization is driven by a small amount of example anomalies, driving an indirectly supervised approach to anomaly detection. Additionally, we enhance the approach by introducing a warm-start method that reduces optimization time between similar problems. We validate the feasibility of Isudra to detect clinically relevant behavior anomalies from over 2M sensor readings collected in five smart homes, reflecting 26 health events. Results indicate that indirectly supervised anomaly detection outperforms both supervised and unsupervised algorithms at detecting instances of health-related anomalies such as falls, nocturia, depression, and weakness.


2020 ◽  
Author(s):  
Alberto Leira ◽  
Esteban Jove ◽  
Jose M Gonzalez-Cava ◽  
José-Luis Casteleiro-Roca ◽  
Héctor Quintián ◽  
...  

Abstract Closed-loop administration of propofol for the control of hypnosis in anesthesia has evidenced an outperformance when comparing it with manual administration in terms of drug consumption and post-operative recovery of patients. Unlike other systems, the success of this strategy lies on the availability of a feedback variable capable of quantifying the current hypnotic state of the patient. However, the appearance of anomalies during the anesthetic process may result in inaccurate actions of the automatic controller. These anomalies may come from the monitors, the syringe pumps, the actions of the surgeon or even from alterations in patients. This could produce adverse side effects that can affect the patient postoperative and reduce the safety of the patient in the operating room. Then, the use of anomaly detection techniques plays a significant role to avoid this undesirable situations. This work assesses different one-class intelligent techniques to detect anomalies in patients undergoing general anesthesia. Due to the difficulty of obtaining real data from anomaly situations, artificial outliers are generated to check the performance of each classifier. The final model presents successful performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Randa Aljably ◽  
Yuan Tian ◽  
Mznah Al-Rodhaan

Nowadays, user’s privacy is a critical matter in multimedia social networks. However, traditional machine learning anomaly detection techniques that rely on user’s log files and behavioral patterns are not sufficient to preserve it. Hence, the social network security should have multiple security measures to take into account additional information to protect user’s data. More precisely, access control models could complement machine learning algorithms in the process of privacy preservation. The models could use further information derived from the user’s profiles to detect anomalous users. In this paper, we implement a privacy preservation algorithm that incorporates supervised and unsupervised machine learning anomaly detection techniques with access control models. Due to the rich and fine-grained policies, our control model continuously updates the list of attributes used to classify users. It has been successfully tested on real datasets, with over 95% accuracy using Bayesian classifier, and 95.53% on receiver operating characteristic curve using deep neural networks and long short-term memory recurrent neural network classifiers. Experimental results show that this approach outperforms other detection techniques such as support vector machine, isolation forest, principal component analysis, and Kolmogorov–Smirnov test.


Sign in / Sign up

Export Citation Format

Share Document