scholarly journals Hydrological modeling of an experimental basin in the semiarid region of the Brazilian State of Pernambuco

Author(s):  
Adriana Guedes Magalhães ◽  
Abelardo Antônio de Assunção Montenegro ◽  
Carolyne Wanessa Lins de Andrade ◽  
Suzana Maria Gico Lima Montenegro ◽  
Robertson Valério de Paiva Fontes Júnior

Hydrological simulation models have proven to be an important tool for managing and planning water resources, enabling the assessment of the impacts of rainfall on surface runoff and soil moisture. This work therefore aimed to apply the SWAT model for the analysis of hydrological processes in the Experimental Basin of the Jatobá Stream, in the semiarid region of the State of Pernambuco, Brazil, considering the calibration and validation of the model from streamflow and soil moisture data. Moreover, the study investigated hydrological effectiveness in a recovery scenario in areas of higher topographic elevation of the arborescent Caatinga and the behavior of the hydrological components under an agricultural expansion scenario. Events which occured between 2009 and 2010 were used to calibrate and validate streamflow and soil moisture data. The calibration and validation of streamflow exhibited efficiency coefficients (NSE) of 0.58 and 0.42, respectively, and 0.53 and 0.46 for soil moisture. The adjustment of the parameters was considered adequate for representing streamflow recession periods. It was also verified that the alternative process of calibration and validation with soil moisture reduced uncertainty. Regeneration of the vegetative cover over 21% of the hilltop areas of arborescent Caatinga led to a significant increase in percolation (42%) and a decrease of 34% in soil moisture (due to water consumption by plants), thus contributing to the recovery of headwaters, increasing resilience to water scarcity. On the other hand, the 38% expansion of agriculture caused an increase of 11% in surface runoff and, consequently, an increase of 10% in soil moisture.

2019 ◽  
Vol 23 (2) ◽  
pp. 1113-1144 ◽  
Author(s):  
Abolanle E. Odusanya ◽  
Bano Mehdi ◽  
Christoph Schürz ◽  
Adebayo O. Oke ◽  
Olufiropo S. Awokola ◽  
...  

Abstract. The main objective of this study was to calibrate and validate the eco-hydrological model Soil and Water Assessment Tool (SWAT) with satellite-based actual evapotranspiration (AET) data from the Global Land Evaporation Amsterdam Model (GLEAM_v3.0a) and from the Moderate Resolution Imaging Spectroradiometer Global Evaporation (MOD16) for the Ogun River Basin (20 292 km2) located in southwestern Nigeria. Three potential evapotranspiration (PET) equations (Hargreaves, Priestley–Taylor and Penman–Monteith) were used for the SWAT simulation of AET. The reference simulations were the three AET variables simulated with SWAT before model calibration took place. The sequential uncertainty fitting technique (SUFI-2) was used for the SWAT model sensitivity analysis, calibration, validation and uncertainty analysis. The GLEAM_v3.0a and MOD16 products were subsequently used to calibrate the three SWAT-simulated AET variables, thereby obtaining six calibrations–validations at a monthly timescale. The model performance for the three SWAT model runs was evaluated for each of the 53 subbasins against the GLEAM_v3.0a and MOD16 products, which enabled the best model run with the highest-performing satellite-based AET product to be chosen. A verification of the simulated AET variable was carried out by (i) comparing the simulated AET of the calibrated model to GLEAM_v3.0b AET, which is a product that has different forcing data than the version of GLEAM used for the calibration, and (ii) assessing the long-term average annual and average monthly water balances at the outlet of the watershed. Overall, the SWAT model, composed of the Hargreaves PET equation and calibrated using the GLEAM_v3.0a data (GS1), performed well for the simulation of AET and provided a good level of confidence for using the SWAT model as a decision support tool. The 95 % uncertainty of the SWAT-simulated variable bracketed most of the satellite-based AET data in each subbasin. A validation of the simulated soil moisture dynamics for GS1 was carried out using satellite-retrieved soil moisture data, which revealed good agreement. The SWAT model (GS1) also captured the seasonal variability of the water balance components at the outlet of the watershed. This study demonstrated the potential to use remotely sensed evapotranspiration data for hydrological model calibration and validation in a sparsely gauged large river basin with reasonable accuracy. The novelty of the study is the use of these freely available satellite-derived AET datasets to effectively calibrate and validate an eco-hydrological model for a data-scarce catchment.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 594 ◽  
Author(s):  
Majid Fereidoon ◽  
Manfred Koch ◽  
Luca Brocca

Hydrological models are widely used for many purposes in water sector projects, including streamflow prediction and flood risk assessment. Among the input data used in such hydrological models, the spatial-temporal variability of rainfall datasets has a significant role on the final discharge estimation. Therefore, accurate measurements of rainfall are vital. On the other hand, ground-based measurement networks, mainly in developing countries, are either nonexistent or too sparse to capture rainfall accurately. In addition to in-situ rainfall datasets, satellite-derived rainfall products are currently available globally with high spatial and temporal resolution. An innovative approach called SM2RAIN that estimates rainfall from soil moisture data has been applied successfully to various regions. In this study, first, soil moisture content derived from the Advanced Microwave Scanning Radiometer for the Earth observing system (AMSR-E) is used as input into the SM2RAIN algorithm to estimate daily rainfall (SM2R-AMSRE) at different sites in the Karkheh river basin (KRB), southwest Iran. Second, the SWAT (Soil and Water Assessment Tool) hydrological model was applied to simulate runoff using both ground-based observed rainfall and SM2R-AMSRE rainfall as input. The results reveal that the SM2R-AMSRE rainfall data are, in most cases, in good agreement with ground-based rainfall, with correlations R ranging between 0.58 and 0.88, though there is some underestimation of the observed rainfall due to soil moisture saturation not accounted for in the SM2RAIN equation. The subsequent SWAT-simulated monthly runoff from SM2R-AMSRE rainfall data (SWAT-SM2R-AMSRE) reproduces the observations at the six gauging stations (with coefficient of determination, R² > 0.71 and NSE > 0.56), though with slightly worse performances in terms of bias (Bias) and root-mean-square error (RMSE) and, again, some systematic flow underestimation compared to the SWAT model with ground-based rainfall input. Additionally, rainfall estimates of two satellite products of the Tropical Rainfall Measuring Mission (TRMM), 3B42 and 3B42RT, are used in the calibrated SWAT- model after bias correction. The monthly runoff predictions obtained with 3B42- rainfall have 0.42 < R2 < 0.72 and−0.06 < NSE < 0.74 which are slightly better than those obtained with 3B42RT- rainfall, but not as good as the SWAT-SM2R-AMSRE. Therefore, despite the aforementioned limitations, using SM2R-AMSRE rainfall data in a hydrological model like SWAT appears to be a viable approach in basins with limited ground-based rainfall data.


2021 ◽  
Author(s):  
Evgenia Koltsida ◽  
Nikos Mamassis ◽  
Andreas Kallioras

Abstract. SWAT (Soil and Water Assessment Tool) is a continuous time, semi-distributed river basin model that has been widely used to evaluate the effects of alternative management decisions on water resources. This study, demonstrates the application of SWAT model for streamflow simulation in an experimental basin with daily and hourly rainfall observations to investigate the influence of rainfall resolution on model performance. The model was calibrated for 2018 and validated for 2019 using the SUFI-2 algorithm in the SWAT-CUP program. Daily surface runoff was estimated using the Curve Number method and hourly surface runoff was estimated using the Green and Ampt Mein Larson method. A sensitivity analysis conducted in this study showed that the parameters related to groundwater flow were more sensitive for daily time intervals and channel routing parameters were more influential for hourly time intervals. Model performance statistics and graphical techniques indicated that the daily model performed better than the sub-daily model. The Curve Number method produced higher discharge peaks than the Green and Ampt Mein Larson method and estimated better the observed values. Overall, the general agreement between observations and simulations in both models suggests that the SWAT model appears to be a reliable tool to predict discharge over long periods of time.


2014 ◽  
Vol 34 (4) ◽  
pp. 789-799 ◽  
Author(s):  
Donizete dos R. Pereira ◽  
Mauro A. Martinez ◽  
André Q. de Almeida ◽  
Fernando F. Pruski ◽  
Demetrius D. da Silva ◽  
...  

Hydrological models are important tools that have been used in water resource planning and management. Thus, the aim of this work was to calibrate and validate in a daily time scale, the SWAT model (Soil and Water Assessment Tool) to the watershed of the Galo creek , located in Espírito Santo State. To conduct the study we used georeferenced maps of relief, soil type and use, in addition to historical daily time series of basin climate and flow. In modeling were used time series corresponding to the periods Jan 1, 1995 to Dec 31, 2000 and Jan 1, 2001 to Dec 20, 2003 for calibration and validation, respectively. Model performance evaluation was done using the Nash-Sutcliffe coefficient (E NS) and the percentage of bias (P BIAS). SWAT evaluation was also done in the simulation of the following hydrological variables: maximum and minimum annual daily flowsand minimum reference flows, Q90 and Q95, based on mean absolute error. E NS and P BIAS were, respectively, 0.65 and 7.2% and 0.70 and 14.1%, for calibration and validation, indicating a satisfactory performance for the model. SWAT adequately simulated minimum annual daily flow and the reference flows, Q90 and Q95; it was not suitable in the simulation of maximum annual daily flows.


2020 ◽  

<p>Hydrological modeling of a watershed is necessary for water resources planning and management. The hydrology of upper Ribb watershed has been analyzed using spatially semi-distributed Soil and water assessment tool (SWAT) model. This study aimed to determine the water balance components and its relation with the rainfall which reaches to the surface of the earth. Different spatio-temporal (land use, soil, digital elevation model, climate data, river discharge) data were used for hydrological modelling of Upper Ribb watershed. The applicability of SWAT model in Upper Ribb watershed has been evaluated using coefficient of determination (R2) and Nash Sutcliff efficiency (NSE) parameters. The calibration results revealed the observed data showed a very good agreement with the simulated data with the R2 and NSE values of 0.90 and 0.84 respectively. Similarly, the validation results of streamflow were acceptable with the R2 and NSE values of 0.80 and 0.82 respectively. The monthly average streamflow from Upper Ribb watershed were found 13.39 m3/s. The major portion of the rainfall contributes to the surface runoff due to the major percentage of the watershed is covered with agricultural lands. The groundwater flow was high in forested areas, while evapotranspiration was found very high in water bodies (Ribb reservoir). In this study area the rainfall showed a direct relationship with the streamflow. The ratio of streamflow and evapotranspiration with rainfall was 0.61 and 0.36 respectively. Due to the presence of high amount of surface runoff and evapotranspiration the deep recharge which contributes to the ground water is not that much significant.</p>


Author(s):  
Denise Piccirillo Barbosa da Veiga ◽  
Manuel Enrique Gamero Guandique ◽  
Adelaide Cassia Nardocci

Land use influences the quality and availability of water resources, but Brazil has made little progress in integrated watershed management. This study therefore applied geoprocessing for land-use classification and evaluated the impact on the hydrological balance in order to contribute to the integrated management of water resources. Using GIS tools, two drainage areas from the water catchment points of two municipalities, Santa Cruz das Palmeiras and Piedade, were delimited; land-use mapping was carried out using the supervised classification method of satellite images, and the SWAT model was applied for hydrological simulation. The methods used were appropriate. The surface runoff was related to the absence of vegetation and the predominance of exposed soil. The relationship between land use/land cover and the hydrological balance was evidenced, especially the impact of agricultural activities and the lack of natural vegetation in the surface runoff.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chang-An Yan ◽  
Wanchang Zhang ◽  
Zhijie Zhang

A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin.


Sign in / Sign up

Export Citation Format

Share Document