scholarly journals The Turner Mountain syenite, Maine, USA: geology, geochemistry, geochronology, petrogenesis, and post-orogenic exhumation

2014 ◽  
Vol 50 ◽  
pp. 233 ◽  
Author(s):  
Chunzeng Wang ◽  
Allan Ludman ◽  
Long Xiao

The Turner Mountain syenite is one of the few plutons located entirely within the Norumbega fault system in the northern Appalachian orogen. It is composed of texturally and mineralogically homogeneous biotite-amphibole syenite and is in faulted contact with mylonitic leucogranite and an unmetamorphosed redbed unit. It is intermediate in SiO2 content (58.7–65.1 wt%) and ultrapotassic (6.4–7.9 wt% K2O) with high K2O/Na2O ratios (2.75–4.15), yet is relatively primitive in terms of MgO (2.8–4.9 wt%), Ni (average 90.2 ppm), and Cr (average 210.1 ppm) contents. It has enriched large-ion-lithophile elements relative to high field strength elements, high contents of light rare-earth elements, and initial 87Sr/86Sr ratios (0.7038–0.7068) similar to that of OIB basalts. It differs petrologically and geochemically from the neighboring Lucerne-Deblois plutons but is similar to Lincoln syenite located 100 km to the southwest, also within the Norumbega system. Zircon U-Pb dating using LA-ICP-MS yields a weighted mean age of 410.5 ± 2.4 Ma, slightly younger than the Lincoln syenite (418 ± 1 Ma). Based on their distinctive geochemical signatures, both were probably products of Late Silurian-Early Devonian ultrapotassic magmatism related to Acadian subduction, generated by partial melting of a mantle wedge metasomatized by potassium-rich fluids during west-directed subduction. This unique magmatism could be attributed to decompressional melting during Late Silurian-Early Devonian slab break-off or delamination. Based on Sr-Nd isotopic compositions, the Turner Mountain syenite magma probably had more crustal interaction than that which formed the Lincoln syenite. The syenite was later exhumed tectonically during brittle reactivation of the Norumbega fault. The reactivation involved regional-scale, high-angle, southeast-over-northwest reverse faulting in a transpressional environment and occurred during the Late Devonian and through Mississippian to Permian.

2014 ◽  
Vol 41 (4) ◽  
pp. 503 ◽  
Author(s):  
K. Stephen Hughes ◽  
James P. Hibbard ◽  
Jeffrey C. Pollock ◽  
David J. Lewis ◽  
Brent V. Miller

The Chopawamsic fault potentially represents the main Iapetan suture, previously unidentified in the southern extent of the Appalachian orogen.  The fault trends through the north-central portion of the western Piedmont of Virginia and separates the composite metaclastic Potomac terrane, commonly interpreted to be of Laurentian affinity, from the Chopawamsic terrane, the remains of a Middle Ordovician volcanic arc of uncertain crustal affinity.  To gain insight on the first-order orogenic significance of the Chopawamsic fault, we report the results of LA–ICP–MS U–Pb analyses of 1,289 detrital zircons from 13 metasedimentary rock samples collected from both sides of the fault.       The near exclusivity of Middle Ordovician zircon grains (ca. 470 – 460 Ma) in four sampled metasedimentary rocks of the Chopawamsic Formation likely represents the detrital recycling of syndepositional Chopawamsic volcanic rocks.  A subset of Cambrian and older grains hint at one or more additional, older sources.       Samples from the Potomac terrane include mostly Mesoproterozoic zircon grains and these results are consistent with previous interpretations that the metaclastic rocks are Laurentian-derived.  The youngest zircons (ca. 550 – 500 Ma) and the age of cross-cutting plutons indicate that at least some parts of the Potomac terrane are Late Cambrian – Early Ordovician.  The results imply temporally discrete and geographically isolated sedimentary systems during deposition of sedimentary rocks in the Chopawamsic and Potomac terranes.       Metasedimentary rocks near Storck, Virginia, previously identified as a successor basin, contain detrital zircon populations that indicate they are actually peri-Gondwanan derived metasedimentary rocks unrelated to a successor basin system; their geographic position between the Laurentian-derived Potomac terrane and the Chopawamsic terrane suggests a peri-Gondwanan affinity for the Chopawamsic arc and geographic separation of the Chopawamsic and Potomac terranes in the Middle Ordovician. Consequently, we tentatively support the hypothesis that the Chopawamsic fault system represents the main Iapetan suture in the southern Appalachian orogen.      Most detrital zircons from samples of the Arvonia successor basin crystallized in the Ordovician—Silurian or Mesoproterozoic.  These data suggest that the Arvonia basin was deposited in the latest Ordovician to Early Silurian only after the Late Ordovician accretion of the Chopawamsic arc to Laurentia.  SOMMAIRELa faille de Chopawamsic représente peut-être la principale suture japétienne, non-reconnue dans prolongement sud de l’orogène des Appalaches.  La faille traverse la portion nord du centre du piedmont ouest de Virginie et sépare le terrane métaclastique de Potomac, d’affinité laurentienne pensait-on, du terrane de Chopawamsic, vestige d’un arc volcanique de l’Ordovicien moyen d’affinité crustale incertain.  Afin de mettre en lumière la signification orogénique première de la faille de Chopawamsic, nous présentons les résultats d’analyses U-Pb par ICP–MS par AL sur 1 289 zircons détritiques provenant de 13 échantillons de roches métasédimentaires prélevés de chaque côté de la faille.     L’existence quasi-exclusive de grains de zircon de l’Ordovicien moyen (env. 470 – 460 Ma) dans quatre roches métasédimentaires de la Formation de Chopawamsic représente vraisemblablement le recyclage détritique des roches volcaniques synsédimentaires de Chopawamsic.  Un sous-ensemble de grains cambriens et plus anciens, évoque l’existence d’une ou plusieurs sources plus anciennes additionnelles.     Les échantillons du terrane de Potomac renferment principalement des grains de zircon du Mésoprotérozoïque, ce qui correspond avec les interprétations antérieures voulant que les roches métaclastiques soient d’origine laurentienne.  Les zircons les plus jeunes (env. 550 – 500 Ma) ainsi que l’âge des plutons qui recoupe l’encaissant indiquent qu’au moins certaines parties du terrane de Potomac sont de la fin du Cambrien ou du début de l’Ordovicien.  Les résultats impliquent l’existence de systèmes sédimentaires distincts au cours du temps, et isolés géographiquement durant le dépôt des roches sédimentaires dans les terranes de Chopawamsic et de Potomac.     Les roches métasédimentaires près de Storck en Virginie, jadis interprétées comme bassin successeur, renferment des populations de zircons détritiques qui indiquent qu’ils proviennent en fait de roches métasédimentaires péri-gondwaniennes sans rapport avec un système de bassin successeur; leur localisation géographique entre le terrane de Potomac issu des Laurentides et le terrane de Chopawamsic porte à penser que l’arc de Chopawamsic est d’affinité péri-gondwanienne, et que les terranes de Chopawamsic et de Potomac à l’Ordovicien moyen étaient séparés géographiquement.   En conséquence il nous semble justifié de proposer que le système de faille de Chopawamsic représente la principale suture japétienne dans le sud de l’orogène des Appalaches.     La plupart des zircons détritiques des échantillons du bassin successeur d’Arvonia ont cristallisés entre l’Ordovicien et le Silurien ou au Mésoprotérozoïque.  Ces données suggèrent que le bassin d’Arvonia s’est rempli de la fin entre l’Ordovicien et le début du Silurien, seulement après l’accrétion de l’arc de Chopawamsic à la Laurentie, à la fin de l’Ordovicien.


Author(s):  
Bagai-ool Yu. Saryg-ool ◽  
Lidiya N. Bukreeva ◽  
Irina N. Myagkaya ◽  
Aleksandr V. Tolstov ◽  
Elena V. Lazareva ◽  
...  

Influence of sample pretreatment on the analysis of the high contents of rare earth (REE) and high field strength (HFSE) elements in geological samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) was studied. The rocks and rich ores of the Tomtor Nb-REE deposit were explored. Complete dissolution of the geological samples with a high content of “refractory” minerals has been achieved using fusion with a sodium peroxide. The results obtained by ICP-AES and ICP-MS after chemical dissolution are comparable with the results obtained by the XRF-SR without chemical pretreatment


2019 ◽  
Vol 10 (1) ◽  
pp. 89-105 ◽  
Author(s):  
Imogen O.H. Fielding ◽  
Simon P. Johnson ◽  
Sebastien Meffre ◽  
Jianwei Zi ◽  
Stephen Sheppard ◽  
...  

2020 ◽  
Author(s):  
Sean Hillacre ◽  
Kevin Ansdell ◽  
Brian McEwan

Abstract Recent significant discoveries of uranium mineralization in the southwestern Athabasca basin, northern Saskatchewan, Canada, have been associated with a series of geophysical conductors along a NE- to SW-trending structural zone, termed the Patterson Lake corridor. The Arrow deposit (indicated mineral resource: 256.6 Mlb U3O8; grade 4.03% U3O8) is along this trend, hosted exclusively in basement orthogneisses of the Taltson domain, and is the largest undeveloped uranium deposit in the basin. This study is the first detailed analysis of a deposit along this corridor and examines the relationships between the ductile framework and brittle reactivation of structures, mineral paragenesis, and uranium mineralization. Paragenetic information from hundreds of drill core samples and thin sections was integrated with structural analysis utilizing over 18,000 measurements of various structural features. The structural system at Arrow is interpreted as a partitioned, strike-slip–dominated, brittle-ductile fault system of complex Riedel-style geometry. The system developed along subvertical, NE- to SW-trending dextral high-strain zones formed syn- to post-D3 deformation, which were the focus of extensive premineralization metasomatism (quartz flooding, sericitization, chloritization), within the limb domain of a regional-scale fold structure. These zones evolved through post-Athabasca dextral and sinistral reactivation events, creating brittle fault linkages and dilation zones, allowing for hydrothermal fluid migration and resulting uraninite precipitation and associated alteration (white mica, chlorite, kaolinite, hematite, quartz veins). This study of the structural context of Arrow is important as it emphasizes that protracted reactivation of deep-seated structures and their subsidiaries was a fundamental control on uranium mineralization in the southwestern Athabasca basin.


2020 ◽  
Vol 57 (12) ◽  
pp. 1447-1462
Author(s):  
Michael D. Hendrickson

The McAra deposit is in eastern Ontario, Canada, and is hosted in an Archean inlier to the Paleoproterozoic Huronian basin. It is currently estimated to contain ∼2.4 million pounds of cobalt at an average grade of 1.25%. New drill data show the mineralized zone comprises glaucodot–cobaltite veins and breccias that transect a mafic–siliciclastic volcanogenic massive sulfide (VMS) deposit. The high cobalt grade and host stratigraphy at the McAra deposit contrast with five-element (Ag–Co–Ni–Bi–As) deposits at the Cobalt and Gowganda camps in the region that produced high-grade silver and by-product cobalt from veins spatially associated with Nipissing Gabbro intrusions. However, geochemical data from recent core samples alongside fluid inclusion and mineralogical data suggest the cobalt zone at McAra and the five-element veins share a similar metal assemblage and were deposited from similar fluids. The mafic–siliciclastic VMS deposit at McAra contains anomalous amounts of cobalt, suggesting the Archean host stratigraphy was the source for the high-grade cobalt zone. Basin brines in the Paleoproterozoic are interpreted to have leached cobalt from Archean rocks and then redeposited it through oxidation–reduction reactions along synvolcanic faults that controlled earlier VMS deposit formation. High-resolution aeromagnetic data show that McAra is immediately adjacent to a mafic dike that transects the Huronian basin along a northwest-striking, crustal-scale fault system. These data, alongside observations from field mapping, also suggest the deposit is on the margin of a sub-basin that contains an 80 km2 Nipissing sill that may have originally overlain the deposit area and been a hydrologic seal during mineralization. The new deposit- and regional-scale data and interpretations are used to create a model for the McAra deposit and provide evidence for why it is cobalt-rich relative to other five-element veins. The model and data can be used to guide exploration for additional cobalt-rich deposits in the region and similar settings globally.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 794
Author(s):  
Wenxiao Zhou ◽  
Haiquan Li ◽  
Feng Chang ◽  
Xinbiao Lv

The early Paleozoic is a crucial period in the formation and evolution of the Eastern Kunlun Orogenic Belt (EKOB), and is of great significance for understanding the evolutionary history of the Proto-Tethyan Ocean. This paper presents new petrography, geochemistry, zircon U–Pb dating, and Lu–Hf isotopic research on the Yuejingshan gabbro from the eastern segment of the EKOB. Zircon U–Pb data suggests that the gabbro formed in the Early Silurian (435 ± 2 Ma). All samples have relatively low TiO2 contents (0.45–2.97%), widely varying MgO (6.58–8.41%) and Mg# (58–65) contents, and are rich in large ion lithophile elements (LILE such as Rb, Ba, Th, and U) and light rare earth elements (LREE). This indicates that it has a similar geochemical composition to island arc basalt. The major element features indicate that the formation of this gabbro underwent fractional crystallization of clinopyroxene, olivine, and plagioclase. The depletion of high field strength elements (HFSE, such as Nb, Ta, and Ti), and a slightly positive Hf isotope (with εHf(t) ranging from 1.13 to 2.45) may be related to the partial melting of spinel-bearing peridotite, led by slab fluid metasomatism. The gabbro likely represents magmatic records of the latest period of the early Paleozoic oceanic crust subduction in the Eastern Kunlun. Therefore, the final closure of the Proto-Tethyan Ocean and the beginning of collisional orogeny occurred before the Early Silurian.


RSC Advances ◽  
2019 ◽  
Vol 9 (56) ◽  
pp. 32435-32440 ◽  
Author(s):  
Rui Tong ◽  
Wei Guo

A simple, rapid, and reliable method based on slurry nebulisation inductively coupled plasma mass spectrometry (ICP-MS) was developed for the direct determination of four high field strength elements (HFSEs, namely, Nb, Ta, Zr, and Hf) in refractory silicate rocks.


2011 ◽  
Vol 182 (4) ◽  
pp. 323-336 ◽  
Author(s):  
Christophe Larroque ◽  
Bertrand Delouis ◽  
Jean-Claude Hippolyte ◽  
Anne Deschamps ◽  
Thomas Lebourg ◽  
...  

AbstractThe lower Var valley is the only large outcropping zone of Plio-Quaternary terrains throughout the southwestern Alps. In order to assess the seismic hazard for the Alps – Ligurian basin junction, we investigated this area to provide a record of earthquakes that have recently occurred near the city of Nice. Although no historical seismicity has been indicated for the lower Var valley, our main objective was to identify traces of recent faulting and to discuss the seismogenic potential of any active faults. We organized multidisciplinary observations as a microseismic investigation (the PASIS survey), with morphotectonic mapping and imagery, and subsurface geophysical investigations. The results of the PASIS dense recording survey were disappointing, as no present-day intense microseismic activity was recorded. From the morphotectonic investigation of the lower Var valley, we revealed several morphological anomalies, such as drainage perturbations and extended linear anomalies that are unrelated to the lithology. These anomalies strike mainly NE-SW, with the major Saint-Sauveur – Donareo lineament, clearly related to faulting of the Plio-Pleistocene sedimentary series. Sub-surface geophysical investigation (electrical resistivity tomography profiling) imaged these faults in the shallow crust, and together with the microtectonic data, allow us to propose the timing of recent faulting in this area. Normal and left-lateral strike-slip faulting occurred several times during the Pliocene. From fault-slip data, the last episode of faulting was left-lateral strike-slip and was related to a NNW-SSE direction of compression. This direction of compression is consistent with the present-day state of stress and the Saint-Sauveur–Donareo fault might have been reactivated several times as a left-lateral fault during the Quaternary. At a regional scale, in the Nice fold-and-thrust belt, these data lead to a reappraisal of the NE-SW structural trends as the major potentially active fault system. We propose that the Saint-Sauveur–Donareo fault belongs to a larger system of faults that runs from near Villeneuve-Loubet to the southwest to the Vésubie valley to the north-east. The question of a structural connection between the Vésubie – Mt Férion fault, the Saint-Sauveur–Donareo fault and its possible extension offshore through the northern Ligurian margin is discussed.The Saint-Sauveur–Donareo fault shows two en-échelon segments that extend for about 8 km. Taking into account the regional seismogenic depth (about 10 km), this fault could produce M ~6 earthquakes if activated entirely during one event. Although a moderate magnitude generally yields a moderate seismic hazard, we suggest that this contribution to the local seismic risk is high, taking into account the possible shallow focal depth and the high vulnerability of Nice and the surrounding urban areas.


Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Dario Civile ◽  
Giuliano Brancolini ◽  
Emanuele Lodolo ◽  
Edy Forlin ◽  
Flavio Accaino ◽  
...  

Abstract The Plio-Quaternary tectonic evolution of the central sector of the Sicilian Channel and the resulting morphostructural setting have been analyzed using a large geophysical dataset consisting of multichannel seismic profiles, which some of them never published, and available bathymetric data. This area hosts two regional-scale tectonic domains that registered the complex pattern of deformation occurred since the Early Pliocene: (1) the Sicilian Channel Rift Zone (SCRZ), which can be divided into a western sector formed by the Pantelleria graben (PG) and in a eastern one represented by the Linosa and Malta grabens (LG and MG) and (2) the Capo Granitola-Sciacca Fault Zone (CGSFZ), a NNE-oriented lithospheric transfer zone that crosses the Sicilian Channel from the Sicily coast to the Linosa Island, of which only its northern part has been studied to date. Data interpretation has allowed achieving the following outcomes: (i) the presence of an alternation of basins and structural highs forming a NNE-oriented separation belt between the western and eastern sectors of the SCRZ, and interpreted as the shallow expression of the southern part of the CGSFZ; (ii) a NE-oriented tectonic lineament separating the MG in a northern and southern part, and interpreted as the southern prosecution of the Scicli-Ragusa Fault System; (iii) the presence of syn-rift deposits in the Plio-Quaternary fill of the grabens, suggesting that the opening of the grabens of the SCRZ was coeval, and started since Early Pliocene in the framework of a NW-oriented right-lateral transtensional mega-shear zone; (iv) continental rifting ended around the Early Calabrian, during which extensional tectonics dominated along the separation belt; (v) the CGSFZ conditioned the SCRZ configuration at a regional scale, leading to the development of the PG in the western sector and of the LG and MG in the eastern one; and (vi) after the Early Calabrian, the PG and the southern MG followed a different tectonic evolution with respect to the LG and northern MG. The syn-rift deposits of the PG and southern MG were sealed by an undeformed post-rift succession, while the LG and the northern MG suffered a basin inversion that ended around the Latest Calabrian time. During this stage, the separation belt was affected by a transpressional tectonics. At present, the grabens of the Sicilian Channel seem to be tectonically inactive, while the CGSFZ represents an active tectonic domain.


Sign in / Sign up

Export Citation Format

Share Document