Dietary manipulation to increase conjugated linoleic acids and other desirable fatty acids in beef: A review

2003 ◽  
Vol 83 (4) ◽  
pp. 673-685 ◽  
Author(s):  
P. S. Mir ◽  
M. Ivan ◽  
M. L. He ◽  
B. Pink ◽  
E. Okine ◽  
...  

The diet is the source of many essential fatty acids such as linoleic and linolenic acids for all mammals. These fatty acids either, as altered isomers or as other elongated products, have been found to provide unique advantages to human health. Currently two conjugated linoleic acids (CLA) isomers (cis-9, trans-11 C18:2; trans-10, cis-12 C18:2) and two elongated products of linolenic acid [eicosapentaenoic acid (EPA, C20:5 n-3), docosahexaenoic acid (DHA, C22:6 n-3)] have been recognized for their roles in maintaining human health. Consumers can obtain these functional fatty acids from beef if the feeding management of beef cattle can be altered to include precursor fatty acids. Diet, breed, and gender are important factors that affect total fat content and/or the fatty acid profile of beef with regard to CLA, EPA, and DHA. Diet provides the precursor fatty acids that are altered and deposited, and breed dictates, the amount of fat that is deposited. These fatty acids can be increased in beef by increasing the forage:concentrate ratio, inclusion of non-fermented forage, and supplementation with various oils or oil seeds. The CLA and vaccenic acid (trans-11 C18:1) concentration in beef was increased by feeding sunflower oil or seeds, linseed, and soybean oil supplemented diets, while cattle fed linseed and fish oil supplemented diets had increased concentrations of EPA and DHA. Although the concentration of these fatty acids can be increased in beef, there is a need to further the understanding of the mechanism by which they exert positive affects on human health. Key words: Cattle, beef, fatty acids, conjugated linoleic acid, eicosapentaenoic acid, docosahexaenoic acid

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Marine Remize ◽  
Yves Brunel ◽  
Joana L. Silva ◽  
Jean-Yves Berthon ◽  
Edith Filaire

N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.


2001 ◽  
Vol 2001 ◽  
pp. 199-199 ◽  
Author(s):  
C. Rymer ◽  
C. Dyer ◽  
D.I. Givens ◽  
R. Allison

The dietary essential fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are predominantly found in fish oil, but fish consumption in the UK is low. Increasing the yield of EPA and DHA in cows’ milk would increase human intakes of EPA and DHA, and this can be achieved by including fish oil in cows’ diets. However, because EPA and DHA are susceptible to rumen biohydrogenation, their transfer efficiency into milk is low.In vitroobservations by Gulatiet al. (1999) suggested that if the concentration of fish oil in the rumen exceeded 1 mg/ml, EPA and DHA were not hydrogenated. The objectives of this study were therefore to determine the relationships between fish oil intake by dairy cows, and the probable concentrations of fish oil in the cows’ rumen, with the yield of EPA and DHA in their milk.


2017 ◽  
Vol 9 (1) ◽  
pp. 109-126
Author(s):  
M. L. Islam ◽  
M. S. Islam ◽  
K. Yahya ◽  
R. Hashim

Effect of essential fatty acids (EFA) on growth and survival of the green mud crab (Scylla paramamosain) larvae was assessed by feeding with natural to commercial diets. The feeding schemes were: larvae reared with Artemia (T1); larvae initially fed with rotifers (up to Z2) and ended (Z3 to megalopa) with Artemia (T2); and larvae fed with rotifers up to Z2 and ended (Z3 to megalopa) with commercial diet (T3). The commercial diet had significantly (p<0.05) higher levels of docosahexaenoic acid (11.23%), ?n-3’s (15.90%) and ?n-6’s (4.21%); and lacked in eicosapentaenoic acid (2.25%) than rotifer and Artemia. The earliest commencement of megalopa stage within 15 days with significantly (p<0.05) higher larval stage index (LSI) of 5.90±0.17 was achieved from the feeding scheme of T2 than other two feeding schemes. This feeding scheme deposited 17.32±0.19% eicosapentaenoic acid (EPA) and 3.82±0.11% docosahexaenoic acid (DHA); the ?n-3 to ?n-6 ratio of 0.20 and EPA to DHA ratio of 0.22 in megalopa, that stimulated significantly higher (p<0.05) megalopa survival (20.00±6.96%) indicating the superiority over rest feeding schemes. Meanwhile, some deformities and mortalities in Z5 and megalopa stages suggested further studies for optimization of specific fatty acid requirements for late larval stages (Z5 and megalopa).


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2282 ◽  
Author(s):  
Sokratis Stergiadis ◽  
Natalja P. Nørskov ◽  
Stig Purup ◽  
Ian Givens ◽  
Michael R. F. Lee

Goat milk is globally consumed but nutritional profiling at retail level is scarce. This study compared the nutrient composition of retail cow and goat milk (basic solids, fatty acids, minerals, and phytoestrogens) throughout the year and quantified the potential implications on the consumers’ nutrient intakes. When compared to cow milk, goat milk demonstrated nutritionally desirable traits, such as lower concentrations of C12:0, C14:0, C16:0 and Na: K ratio, and the higher concentrations of cis polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), isoflavones, B, Cu, Mg, Mn, P and I, although the latter may be less desirable in cases of high milk intakes. However, in contrast with nutritional targets, it had lower concentrations of omega-3 PUFA, vaccenic acid, lignans, Ca, S and Zn. The extent of these differences was strongly influenced by season and may demonstrate a combination of differences on intrinsic species metabolism, and farm breeding/husbandry practices.


2003 ◽  
Vol 56 (1-2) ◽  
pp. 50-53 ◽  
Author(s):  
Vanja Ristic ◽  
Gordana Ristic

Introduction Hyperlipoproteinemia is a key factor in development of atherosclerosis, whereas regression of atherosclerosis mostly depends on decreasing the plasma level of total and LDL-cholesterol. Many studies have reported the hypocholesterolemic effect of linolenic acid. Types of polyunsaturated fatty acids (PUFA) Linoleic and ?-linolenic acids are essential fatty acids. The main sources of linoleic acid are vegetable seeds and of ?-linolenic acid - green parts of plants. ?-linolenic acid is converted to eicosapentaenoic and docosahexaenoic acid. Linoleic acid is converted into arachidonic acid competing with eicosapentaenoic acid in the starting point for synthesis of eicosanoids, which are strong regulators of cell functions and as such, very important in physiology and pathophysiology of cardiovascular system. Eicosanoids derived from eicosapentaenoic acid have different biological properties in regard to those derived from arachidonic acid, i.e. their global effects result in decreased vasoconstriction platelet aggregation and leukocyte toxicity. Role and significant of PUFA The n-6 to n-3 ratio of polyunsaturated fatty acids in the food is very important, and an optimal ratio 4 to 1 in diet is a major issue. Traditional western diets present absolute or relative deficiency of n-3 polyunsaturated fatty acids, and a ratio 15-20 to 1. In our diet fish and fish oil are sources of eicosapentaenoic and docosahexaenoic acid. Refined and processed vegetable oils change the nature of polyunsaturated fatty acids and obtained derivates have atherogenic properties.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3718
Author(s):  
Anandita Pal ◽  
Adam H. Metherel ◽  
Lauren Fiabane ◽  
Nicole Buddenbaum ◽  
Richard P. Bazinet ◽  
...  

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 polyunsaturated fatty acids (PUFAs) consumed in low abundance in the Western diet. Increased consumption of n-3 PUFAs may have beneficial effects for a wide range of physiological outcomes including chronic inflammation. However, considerable mechanistic gaps in knowledge exist about EPA versus DHA, which are often studied as a mixture. We suggest the novel hypothesis that EPA and DHA may compete against each other through overlapping mechanisms. First, EPA and DHA may compete for residency in membrane phospholipids and thereby differentially displace n-6 PUFAs, which are highly prevalent in the Western diet. This would influence biosynthesis of downstream metabolites of inflammation initiation and resolution. Second, EPA and DHA exert different effects on plasma membrane biophysical structure, creating an additional layer of competition between the fatty acids in controlling signaling. Third, DHA regulates membrane EPA levels by lowering its rate of conversion to EPA’s elongation product n-3 docosapentaenoic acid. Collectively, we propose the critical need to investigate molecular competition between EPA and DHA in health and disease, which would ultimately impact dietary recommendations and precision nutrition trials.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 369
Author(s):  
Megumu Fujibayashi ◽  
Osamu Nishimura ◽  
Takashi Sakamaki

Bivalves serve as an important aquaculture product, as they are the source of essential fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in our diet. However, their cultivation in the wild can be affected by fouling organisms that, in turn, affect their EPA and DHA content. The effects of fouling organisms on the EPA and DHA contents of cultivated bivalves have not been well documented. We examined the effects of fouling organisms on the EPA and DHA contents and condition index of cultured oysters, Crassostrea gigas, in an aquaculture system. We sampled two-year-old oysters from five sites in Shizugawa Bay, Japan, in August 2014. Most of the fouling organisms were sponges, macroalgae, and Mytilus galloprovincialis. A significant negative relationship existed between the DHA content in C. gigas and the presence of sponges and macroalgae. A lower C. gigas EPA content corresponded to a higher M. galloprovincialis fouling mass and a lower C. gigas condition index. This can be explained by dietary competition between C. gigas and M. galloprovincialis for diatoms, which were the main producer of EPA in our study sites. Our findings indicate that fouling organisms likely reduce the EPA and DHA content in cultivated oysters. Therefore, our results suggest that the current efforts to remove fouling organisms from oyster clusters is an effective strategy to enhance the content of EPA and DHA in oysters.


Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 179-185
Author(s):  
A.L. Khalihena Groune ◽  
B. Med Lemine ◽  
E.H. Adnane ◽  
H. Mohammed

In order to assess the quantity and quality of lipids in the Caranx rhonchus in Mauritanian Atlantic, we carried out analytical studies (FTIR-ATR analysis and chromatographic analysis) of lipids and fatty acids. The results revealed that the studied samples are generally rich in lipids: 11, 39 and 31, 49%. The fatty acids of the lipids of the samples studied are subdivided into three essential groups: polyunsaturated fatty acids, monounsaturated fatty acids and saturated fatty acids. The results showed that the Caranx rhonchus in Mauritanian Atlantic is very rich in monounsaturated fatty acids (oleic acid, palmitoleic acid and vaccenic acid) in comparison with the polyunsaturated (eicosapentaenoic acid and docosahexaenoic acid) and saturated fatty acids.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yue Wang ◽  
Qiaowei Lin ◽  
Peipei Zheng ◽  
Lulu Li ◽  
Zhengxi Bao ◽  
...  

The present research was undertaken to determine the effects of EPA (20 : 5 n-3) and DHA (22 : 6 n-3) on chylomicron and VLDL synthesis and secretion by Caco-2 cells. Cells were incubated for 12 to 36 h with 400 μM OA, EPA, and DHA; then 36 h was chosen for further study because EPA and DHA decreased de novo triglycerides synthesis in a longer incubation compared with OA  (P<0.01). Neither the uptake nor oxidation was different in response to the respective fatty acids (P>0.05). Compared with OA, intercellular and secreted nascent apolipoprotein B48 and B100 were decreased by EPA and DHA (P<0.01). Both DHA and EPA resulted in a lower secretion of chylomicron and VLDL (P<0.01). In contrast to OA, EPA and DHA were preferentially incorporated into phospholipids instead of triacylglycerols (P<0.01). These discoveries demonstrated that exposure of DHA and EPA reduced the secretion of chylomicron and VLDL partly by regulating the synthesis of TG and apoB.


Sign in / Sign up

Export Citation Format

Share Document