scholarly journals Effects of Essential Fatty Acids Containing Natural and Commercial Diets on Larvae Rearing of the Green Mud Crab Scylla Paramamosain (Estampador 1949)

2017 ◽  
Vol 9 (1) ◽  
pp. 109-126
Author(s):  
M. L. Islam ◽  
M. S. Islam ◽  
K. Yahya ◽  
R. Hashim

Effect of essential fatty acids (EFA) on growth and survival of the green mud crab (Scylla paramamosain) larvae was assessed by feeding with natural to commercial diets. The feeding schemes were: larvae reared with Artemia (T1); larvae initially fed with rotifers (up to Z2) and ended (Z3 to megalopa) with Artemia (T2); and larvae fed with rotifers up to Z2 and ended (Z3 to megalopa) with commercial diet (T3). The commercial diet had significantly (p<0.05) higher levels of docosahexaenoic acid (11.23%), ?n-3’s (15.90%) and ?n-6’s (4.21%); and lacked in eicosapentaenoic acid (2.25%) than rotifer and Artemia. The earliest commencement of megalopa stage within 15 days with significantly (p<0.05) higher larval stage index (LSI) of 5.90±0.17 was achieved from the feeding scheme of T2 than other two feeding schemes. This feeding scheme deposited 17.32±0.19% eicosapentaenoic acid (EPA) and 3.82±0.11% docosahexaenoic acid (DHA); the ?n-3 to ?n-6 ratio of 0.20 and EPA to DHA ratio of 0.22 in megalopa, that stimulated significantly higher (p<0.05) megalopa survival (20.00±6.96%) indicating the superiority over rest feeding schemes. Meanwhile, some deformities and mortalities in Z5 and megalopa stages suggested further studies for optimization of specific fatty acid requirements for late larval stages (Z5 and megalopa).

2001 ◽  
Vol 2001 ◽  
pp. 199-199 ◽  
Author(s):  
C. Rymer ◽  
C. Dyer ◽  
D.I. Givens ◽  
R. Allison

The dietary essential fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are predominantly found in fish oil, but fish consumption in the UK is low. Increasing the yield of EPA and DHA in cows’ milk would increase human intakes of EPA and DHA, and this can be achieved by including fish oil in cows’ diets. However, because EPA and DHA are susceptible to rumen biohydrogenation, their transfer efficiency into milk is low.In vitroobservations by Gulatiet al. (1999) suggested that if the concentration of fish oil in the rumen exceeded 1 mg/ml, EPA and DHA were not hydrogenated. The objectives of this study were therefore to determine the relationships between fish oil intake by dairy cows, and the probable concentrations of fish oil in the cows’ rumen, with the yield of EPA and DHA in their milk.


2003 ◽  
Vol 56 (1-2) ◽  
pp. 50-53 ◽  
Author(s):  
Vanja Ristic ◽  
Gordana Ristic

Introduction Hyperlipoproteinemia is a key factor in development of atherosclerosis, whereas regression of atherosclerosis mostly depends on decreasing the plasma level of total and LDL-cholesterol. Many studies have reported the hypocholesterolemic effect of linolenic acid. Types of polyunsaturated fatty acids (PUFA) Linoleic and ?-linolenic acids are essential fatty acids. The main sources of linoleic acid are vegetable seeds and of ?-linolenic acid - green parts of plants. ?-linolenic acid is converted to eicosapentaenoic and docosahexaenoic acid. Linoleic acid is converted into arachidonic acid competing with eicosapentaenoic acid in the starting point for synthesis of eicosanoids, which are strong regulators of cell functions and as such, very important in physiology and pathophysiology of cardiovascular system. Eicosanoids derived from eicosapentaenoic acid have different biological properties in regard to those derived from arachidonic acid, i.e. their global effects result in decreased vasoconstriction platelet aggregation and leukocyte toxicity. Role and significant of PUFA The n-6 to n-3 ratio of polyunsaturated fatty acids in the food is very important, and an optimal ratio 4 to 1 in diet is a major issue. Traditional western diets present absolute or relative deficiency of n-3 polyunsaturated fatty acids, and a ratio 15-20 to 1. In our diet fish and fish oil are sources of eicosapentaenoic and docosahexaenoic acid. Refined and processed vegetable oils change the nature of polyunsaturated fatty acids and obtained derivates have atherogenic properties.


2003 ◽  
Vol 83 (4) ◽  
pp. 673-685 ◽  
Author(s):  
P. S. Mir ◽  
M. Ivan ◽  
M. L. He ◽  
B. Pink ◽  
E. Okine ◽  
...  

The diet is the source of many essential fatty acids such as linoleic and linolenic acids for all mammals. These fatty acids either, as altered isomers or as other elongated products, have been found to provide unique advantages to human health. Currently two conjugated linoleic acids (CLA) isomers (cis-9, trans-11 C18:2; trans-10, cis-12 C18:2) and two elongated products of linolenic acid [eicosapentaenoic acid (EPA, C20:5 n-3), docosahexaenoic acid (DHA, C22:6 n-3)] have been recognized for their roles in maintaining human health. Consumers can obtain these functional fatty acids from beef if the feeding management of beef cattle can be altered to include precursor fatty acids. Diet, breed, and gender are important factors that affect total fat content and/or the fatty acid profile of beef with regard to CLA, EPA, and DHA. Diet provides the precursor fatty acids that are altered and deposited, and breed dictates, the amount of fat that is deposited. These fatty acids can be increased in beef by increasing the forage:concentrate ratio, inclusion of non-fermented forage, and supplementation with various oils or oil seeds. The CLA and vaccenic acid (trans-11 C18:1) concentration in beef was increased by feeding sunflower oil or seeds, linseed, and soybean oil supplemented diets, while cattle fed linseed and fish oil supplemented diets had increased concentrations of EPA and DHA. Although the concentration of these fatty acids can be increased in beef, there is a need to further the understanding of the mechanism by which they exert positive affects on human health. Key words: Cattle, beef, fatty acids, conjugated linoleic acid, eicosapentaenoic acid, docosahexaenoic acid


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Marine Remize ◽  
Yves Brunel ◽  
Joana L. Silva ◽  
Jean-Yves Berthon ◽  
Edith Filaire

N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.


1998 ◽  
Vol 4 (6) ◽  
pp. 401-405 ◽  
Author(s):  
V.J. Robles ◽  
H.S. García ◽  
J.A. Monroy ◽  
O. Angulo

Menhaden oil was hydrolyzed using a lipase from Pseudomonas sp. The hydrolysate was cold frac tionated at-72°C. Glyceride synthesis was performed using the same lipase under different reaction environments. The best conditions for the esterification reaction were 39 °C for 18 h in a reaction mixture containing anhydrous glycerol, n-3 polyunsaturated fatty acids (PUFA) enriched solution (2% lipids in hexane), hexane, and phosphate buffer-lipase solution (1% w/v). Product composition was 81.33% triacylglycerides and 18.67% of free fatty acids (w/w). Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for 36.18% of the esterified fatty acids, of which 58% was EPA and 42% was DHA. This method offers an alternative to produce glycerides rich in n-3 PUFA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Estefania Aparicio ◽  
Carla Martín-Grau ◽  
Carmen Hernández-Martinez ◽  
Nuria Voltas ◽  
Josefa Canals ◽  
...  

Abstract Background During pregnancy a high amount of fatty acids (FA) is necessary to meet foetus demands, which vary during gestation. The present study describes the changes in maternal fatty acid concentrations during pregnancy in a sample of pregnant women. Methods This is a longitudinal study of 479 pregnant women who were monitored from the first trimester to third trimester of pregnancy. Data on maternal characteristics were recorded and a serum sample was collected in each trimester. The fatty acid profile (saturated (SFA: total, lauric acid, myristic acid, palmitic acid, stearic acid), monounsaturated (MUFA: total, palmitoleic acid, oleic acid) and polyunsaturated fatty acids (PUFA: total omega-6 (n-6), linoleic acid, dihomo-γ-linolenic acid, arachidonic acid (AA), total omega-3 (n-3), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)) was analysed with a gas chromatography-mass spectrometry combination. Results From the first trimester to third trimester of pregnancy, a significant increase in total SFA, total MUFA and total n-6 PUFA was found. (p < 0.001). Nevertheless, the serum concentration of arachidonic acid (AA), eicosapentaenoic acid (EPA) and total n-3 PUFA decreased during gestation (p < 0.001). A statistically non-significant result was observed for the docosahexaenoic acid (DHA) serum concentration between the first and third trimesters of pregnancy. Significant correlations were observed between each total fatty acid concentrations of the first and third trimesters. Conclusion The circulating serum concentration of SFA, MUFA and n-6 PUFA increases during pregnancy, whereas essential fatty acids such as AA and EPA decrease, and DHA remains unchanged. Further research is necessary to understand the role played by FA throughout gestation.


2021 ◽  
Author(s):  
Yi Liu ◽  
Deepika Dave

Marine by-products (heads, frames, trimmings, viscera, skin and scales) have been extensively investigated as sources of marine omega-3 fatty acids (mainly eicosapentaenoic acid and docosahexaenoic acid). Traditionally, extraction of fish...


Sign in / Sign up

Export Citation Format

Share Document