Cloning of the gene encoding cucumber lumazine synthase and an analysis of its promoter activity in cucumber

2010 ◽  
Vol 90 (6) ◽  
pp. 809-818 ◽  
Author(s):  
R. Wang ◽  
M. Chen ◽  
F. Liao ◽  
F. Jiang ◽  
B. Ma ◽  
...  

Promoters are an important regulatory element controlling the temporal and spatial expression of genes; thus, they play a critical role in genetic engineering by controlling target gene expression. Cucumber is a widely planted vegetable with a pleasant flavor and high economic value. However, most genetic engineering studies involving cucumber have utilized the CaMV 35S promoter, which mediates ubiquitous target gene expression. To identify a promoter that is highly expressed in cucumber fruit, total proteins from cucumber fruit were analyzed by two-dimensional gel electrophoresis. One spot which is highly expressed in fruit was sequenced from its N-terminus using the Edman degradation method. A total of 10 amino acids (Ala-Val-Arg-His-Ile-Ala-Gly-Ser-Leu-Ala) were sequenced. Based on these 10 residues, a cDNA fragment 905 bp in length was cloned using 3′- and 5′-RACE. The corresponding gene, which encodes 220 amino acids, showed 65-73% similarity to other plant lumazine synthases without the signal peptide. We also cloned the 2.1-kb upstream promoter sequence of this Cucumis sativus lumazine synthase (CsLS) and analyzed its promoter activity by GUS histochemical and fluorometric assays. Our results indicate that CsLS is highly expressed in cucumber fruit, whereas it is expressed at low levels in cucumber stems and leaves.

2006 ◽  
Vol 26 (1) ◽  
pp. 209-220 ◽  
Author(s):  
Alexis Dumortier ◽  
Robin Jeannet ◽  
Peggy Kirstetter ◽  
Eva Kleinmann ◽  
MacLean Sellars ◽  
...  

ABSTRACT The Ikaros transcription factor is both a key regulator of lymphocyte differentiation and a tumor suppressor in T lymphocytes. Mice carrying a hypomorphic mutation (IkL/L) in the Ikaros gene all develop thymic lymphomas. IkL/L tumors always exhibit strong activation of the Notch pathway, which is required for tumor cell proliferation in vitro. Notch activation occurs early in tumorigenesis and may precede transformation, as ectopic expression of the Notch targets Hes-1 and Deltex-1 is detected in thymocytes from young IkL/L mice with no overt signs of transformation. Notch activation is further amplified by secondary mutations that lead to C-terminal truncations of Notch 1. Strikingly, restoration of Ikaros activity in tumor cells leads to a rapid and specific downregulation of Notch target gene expression and proliferation arrest. Furthermore, Ikaros binds to the Notch-responsive element in the Hes-1 promoter and represses Notch-dependent transcription from this promoter. Thus, Ikaros-mediated repression of Notch target gene expression may play a critical role in defining the tumor suppressor function of this factor.


2003 ◽  
Vol 17 (6) ◽  
pp. 1019-1026 ◽  
Author(s):  
Xiao Hu ◽  
Suzhen Li ◽  
Jun Wu ◽  
Chunsheng Xia ◽  
Deepak S. Lala

Abstract Liver X receptors (LXRs) are members of the nuclear receptor superfamily that regulate gene expression in response to oxysterols and play a critical role in cholesterol homeostasis by regulating genes that are involved in cholesterol transport, catabolism, and triglyceride synthesis. Oxysterols and synthetic agonists bind LXRs and activate transcription by recruiting coactivator proteins. The role of LXRs in regulating target gene expression in the absence of ligand is unknown. Here we show that LXRs interact with corepressors, N-CoR (nuclear receptor corepressor) and SMRT (silent mediator of retinoic acid receptor and thyroid receptor), which are released upon binding agonists. The LXR-corepressor interaction is isoform selective, wherein LXRα has a very strong interaction with corepressors and LXRβ only shows weak interaction. LXRs also exhibit a preference for interacting with N-CoR vs. SMRT. Similar to other nuclear receptors, mutations in the LXR helix 3 and 4 region abolish corepressor interaction. Using a transient transfection assay, we demonstrate that LXR represses transcription that can be further increased by cotransfecting N-CoR into cells. Chromatin immunoprecipitation experiments further indicated that N-CoR is recruited onto endogenous LXR target genes, and addition of LXR agonists releases N-CoR from their promoters. Collectively, these results suggest that corepressors play an important role in regulating LXR target gene expression.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2049-P
Author(s):  
REBECCA K. DAVIDSON ◽  
NOLAN CASEY ◽  
JASON SPAETH

Author(s):  
Philipp Moritz Fricke ◽  
Angelika Klemm ◽  
Michael Bott ◽  
Tino Polen

Abstract Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an l-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. Key points • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.


2002 ◽  
Vol 88 (2) ◽  
pp. 363-371 ◽  
Author(s):  
Aruna V. Krishnan ◽  
Donna M. Peehl ◽  
David Feldman

2014 ◽  
Vol 10 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Garrett S. Gibbons ◽  
Scott R. Owens ◽  
Eric R. Fearon ◽  
Zaneta Nikolovska-Coleska

2010 ◽  
Vol 24 (6) ◽  
pp. 1714-1724 ◽  
Author(s):  
Ingo D. Meier ◽  
Christian Bernreuther ◽  
Thomas Tilling ◽  
John Neidhardt ◽  
Yong Wee Wong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document