A preliminary genetic structure study of the non-native weed, common tansy (Tanacetum vulgare)

2011 ◽  
Vol 91 (4) ◽  
pp. 717-723 ◽  
Author(s):  
Benjamin Clasen ◽  
Nicole Moss ◽  
Monika Chandler ◽  
Alan Smith

Clasen, B. M., Moss, N. G., Chandler, M. A. and Smith, A. G. 2011. A preliminary genetic structure study of the non-native weed, common tansy (Tanacetum vulgare). Can. J. Plant Sci. 91: 717–723. Common tansy is an herbaceous perennial member of the Asteraceae and is considered a weed in North America. Common tansy was introduced deliberately for use as a funerary herb, medicine, preservative, and animal and insect repellent. It is known to escape cultivation and invade disturbed areas, spreading both sexually and asexually. This paper reports a preliminary analysis of the genetic structure of 10 invasive common tansy populations in Minnesota and Montana, USA, and Alberta, Canada. Ninety polymorphic loci were found using six inter simple sequence repeat (ISSR) primers used to amplify DNA from 40 individuals from 10 discrete populations. The diversity within and among populations was assessed using the Dice coefficient of similarity and AMOVA. The AMOVA showed that diversity within populations was generally high and that there was relatively small variation among populations. An unweighted pair-group with arithmetic mean (UPGMA) dendrogram was constructed based on the distance between populations, and demonstrated substantial and distinct clustering of a population from Ramsey County, Minnesota. A principal coordinates analysis clustered all individuals from Ramsey County distinctly from other individuals, indicating a possible limited gene flow among this population and the other populations sampled in this study. Understanding genetic diversity and the distribution of diversity within and among populations may help predict the potential for successful management of common tansy populations in North America.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1803
Author(s):  
Valentino Palombo ◽  
Elena De Zio ◽  
Giovanna Salvatore ◽  
Stefano Esposito ◽  
Nicolaia Iaffaldano ◽  
...  

Mediterranean trout is a freshwater fish of particular interest with economic significance for fishery management, aquaculture and conservation biology. Unfortunately, native trout populations’ abundance is significantly threatened by anthropogenic disturbance. The introduction of commercial hatchery strains for recreation activities has compromised the genetic integrity status of native populations. This work assessed the fine-scale genetic structure of Mediterranean trout in the two main rivers of Molise region (Italy) to support conservation actions. In total, 288 specimens were caught in 28 different sites (14 per basins) and genotyped using the Affymetrix 57 K rainbow-trout-derived SNP array. Population differentiation was analyzed using pairwise weighted FST and overall F-statistic estimated by locus-by-locus analysis of molecular variance. Furthermore, an SNP data set was processed through principal coordinates analysis, discriminant analysis of principal components and admixture Bayesian clustering analysis. Firstly, our results demonstrated that rainbow trout SNP array can be successfully used for Mediterranean trout genotyping. In fact, despite an overwhelming number of loci that resulted as monomorphic in our populations, it must be emphasized that the resulted number of polymorphic loci (i.e., ~900 SNPs) has been sufficient to reveal a fine-scale genetic structure in the investigated populations, which is useful in supporting conservation and management actions. In particular, our findings allowed us to select candidate sites for the collection of adults, needed for the production of genetically pure juvenile trout, and sites to carry out the eradication of alien trout and successive re-introduction of native trout.


2018 ◽  
Vol 17 (03) ◽  
pp. 232-244 ◽  
Author(s):  
J. M. Preston ◽  
B. V. Ford-Lloyd ◽  
L. M. J. Smith ◽  
R. Sherman ◽  
N. Munro ◽  
...  

AbstractLandraces (including heritage varieties) are an important agrobiodiversity resource offering considerable value as a buffer against crop failures, as a crop for niche markets, and as a source of diversity for crop genetic improvement activities underpinning future food security. Home gardens are reservoirs of landrace diversity, but some of the accessions held in them are vulnerable or threatened with extinction. Those associated with seed saving networks have added security, for example, ca. 800 varieties are stored in the Heritage Seed Library (HSL) of Garden Organic, UK. In this study, Amplified Fragment Length Polymorphisms-based genetic analysis of accessions held in the HSL was used to (a) demonstrate the range of diversity in the collection, (b) characterize accessions to aid collection management and (c) promote broader use of the collection. In total, 171 accessions were included from six crops: Vicia faba L., Pisum sativum L., Daucus carota L., Cucumis sativus L., Lactuca sativa L. and Brassica oleracea L. var. acephala (DC.) Metzq. Average expected heterozygosity ranged from 0.18 to 0.28 in D. carota; 0.02–0.18 in P. sativum; 0.05–0.18 in L. sativa; 0.15–0.26 in B. oleracea var. acephala; 0.15–0.37 in C. sativus and 0.07–0.36 in V. faba. Genetic diversity and Fst values generally reflected the breeding system and cultivation history of the different crops. Comparisons of the diversity found in heritage varieties with that found in commercial varieties did not show a consistent pattern. Principal coordinates analysis and Unweighted Pair Group Method with Arithmetic Mean cluster analysis were used to identify four potential duplicate accession pairs.


2014 ◽  
Vol 41 (No. 4) ◽  
pp. 175-184 ◽  
Author(s):  
M. Carvalho ◽  
M. Matos ◽  
V. Carnide

  In recent years the production and consumption Vaccinium corymbosum has increased. Highbush blueberry cultivars are divided into three types, northern, intermediate and southern. The traditional methods for classification of highbush blueberry cultivars using morphological and flavour traits are largely unsuccessful, due to environmental influences. The genetic similarity of ten highbush blueberry cultivars was evaluated using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers from fruits and leaves. The DNA concentrations obtained in fruits and leaves were very similar and the band profiles observed in the two tissues were analogous with both molecular markers. RAPD analysis generated 144 bands, of which 112 were polymorphic (77.8%) in fruits and 141 bands of which 118 were polymorphic (83.7%) in leaves. In fruits, ISSR analysis produced 151 bands of which 127 were polymorphic (84.1%) and in leaves it produced 148 bands with 127 being polymorphic (85.8%). Dendrogram and principal coordinates analysis (PCO) analysis using the both markers results were concordant and a clear division of the types of highbush blueberry cultivars (northern and southern) into two distinct groups was verified.    


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 666
Author(s):  
Karol O. Puchała ◽  
Zuzanna Nowak-Życzyńska ◽  
Sławomir Sielicki ◽  
Wanda Olech

Microsatellite DNA analysis is a powerful tool for assessing population genetics. The main aim of this study was to assess the genetic potential of the peregrine falcon population covered by the restitution program. We characterized individuals from breeders that set their birds for release into the wild and birds that have been reintroduced in previous years. This was done using a well-known microsatellite panel designed for the peregrine falcon containing 10 markers. We calculated the genetic distance between individuals and populations using the UPGMA (unweighted pair group method with arithmetic mean) method and then performed a Principal Coordinates Analysis (PCoA) and constructed phylogenetic trees, to visualize the results. In addition, we used the Bayesian clustering method, assuming 1–15 hypothetical populations, to find the model that best fit the data. Units were segregated into groups regardless of the country of origin, and the number of alleles and observed heterozygosity were different in different breeding groups. The wild and captive populations were grouped independent of the original population.


2016 ◽  
Vol 106 (8) ◽  
pp. 900-908 ◽  
Author(s):  
Hao-Xi Li ◽  
Marin Talbot Brewer

The epidemiology of gummy stem blight (GSB) of cucurbits, particularly the sources of inoculum for epidemics, and the regional population genetic structure of the causal fungi Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), S. citrulli, and S. caricae are not well understood. Our goal was to better understand the population structure and fine-scale spatial genetic structure of Stagonosporopsis spp. in the southeastern United States. Overall, 528 isolates collected from nine fields in 2012, 2013, and 2014 were genotyped with 16 microsatellite markers. In 2013, S. caricae was first detected in the southeastern United States; however, S. citrulli remained the dominant species, representing 96.4% of the isolates. Principal coordinates analysis, discriminant analysis of principle components, and analysis of molecular variance indicated that most populations of S. citrulli were genotypically diverse, yet dominated by widely distributed clones that contributed to regional population structure. Spatial genetic structure resulting from aggregation of clonal genotypes at distances of less than 10 meters was detected within two of three fields in which isolate location was recorded. Studies on the epidemiological and fitness differences between S. citrulli and S. caricae and of prevalent and widespread clones will provide insight into the population structure and species dynamics observed in GSB epidemics.


2011 ◽  
Vol 101 (6) ◽  
pp. 679-686 ◽  
Author(s):  
S. Vitale ◽  
A. Santori ◽  
E. Wajnberg ◽  
P. Castagnone-Sereno ◽  
L. Luongo ◽  
...  

Fusarium lateritium is a globally distributed plant pathogen. It was recently reported as the causal agent of nut gray necrosis (NGN) on hazelnut. Isolate characterization within F. lateritium was undertaken to investigate how morphological and molecular diversity was associated with host and geographic origin. Morphological studies combined with inter-simple-sequence repeat (ISSR) analysis, and phylogenetic analyses using translation elongation factor 1α (TEF-1α), β-tubulin genes, and nuclear ribosomal DNA internal transcribed spacer (ITS) sequences were conducted to resolve relationships among 32 F. lateritium isolates from NGN-affected hazelnut fruit, and 14 from other substrates or 8 from other hosts than hazelnut. Colonies of F. lateritium from hazelnut showed dark grayish-olive differing from the orange-yellow color of all other isolates from other hosts. Generally, isolates from NGN-affected fruit failed to produce sporodochia on carnation leaf agar. The influence of host and substrate on the genetic structure of F. lateritium was supported by ISSR and analyzed with principal coordinates analysis. A relationship between hazelnut and genetic variation was inferred. Phylogenetic analysis of ITS provided limited resolution while TEF-1α and β-tubulin analyses allowed a clear separation between the European and non-European F. lateritium isolates retrieved from GenBank, regardless of host. Though morphological traits of F. lateritium isolates from hazelnut were generally uniform in defining a typical morphogroup, they were not yet phylogenetically defined. In contrast, the typology related to slimy deep orange cultures, due to spore mass, grouped clearly separated from the other F. lateritium isolates and revealed a congruence between morphology and phylogeny.


2020 ◽  
Vol 26 (4) ◽  
pp. 211-216
Author(s):  
Alma Molytė ◽  
Alina Urnikytė ◽  
Vaidutis Kučinskas

Background. Population genetic structure is one of the most important population genetic parameters revealing its demographic features. The aim of this study was to evaluate the homogeneity of the Lithuanian population on the basis of the genome-wide genotyping data. The comparative analysis of three methods – multidimensional scaling, principal components, and principal coordinates analysis – to visualize multidimensional genetics data was performed. The results of visualization (mapping images) are also presented. Materials and methods. The data set consisted of 425 samples from six ethnolinguistic groups of the Lithuanian population. Genomic DNA was extracted from whole venous blood using either the phenol-chloroform extraction method or the automated DNA extraction platform TECAN Freedom EVO. Genotyping was performed at the Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Lithuania, with the Illumina HumanOmniExpress-12 v1.1 and the Infinium OmniExpress-24. For the estimation of homogeneity of the Lithuanian population, PLINK data file was obtained using PLINK v1.07 program. The Past3 software was used to visualize the genotype data with multidimensional scaling and principal coordinates methods. The SmartPCA from EIGENSOFT 7.2.1 program was used in the principal component analysis to determine the population structure. Conclusions. Methods of multidimensional scaling, principal coordinate, and principal component for the genetic structure of the Lithuanian population were investigated and compared. The principal coordinate and principal component methods can be used for genotyping data visualization, since any essential differences in the results obtained were not observed and compared to multidimensional scaling. The Lithuanian population is homogenous whereas the points are strongly close when we use the principal coordinates or principal component methods.


2008 ◽  
Vol 54 (8) ◽  
pp. 610-618
Author(s):  
G. Vázquez-Marrufo ◽  
D. Marín-Hernández ◽  
M. G. Zavala-Páramo ◽  
G. Vázquez-Narvaez ◽  
C. Álvarez-Aguilar ◽  
...  

Forty-six isolates of the Mycobacterium tuberculosis complex were typified by PCR of the IS6110 region and by Mycobacterium bovis specific primers JB21/JB22. Isolate MVG01 was typified as M. bovis, being the first record of a case of human tuberculosis caused by this species in Mexico. RAPD–PCR was used to describe the genetic diversity of the remaining 45 M. tuberculosis complex isolates. The corrected genotypic diversity value calculated for the analyzed population was 0.96, the estimated mean gene diversity was 0.235, and the corrected Shannon–Weiner index was 2.15. All allele–loci combinations generated showed significant linkage disequilibria. The distribution of genetic variation was analyzed both by the unweighted pair group method with arithmetic averages clustering and by principal coordinates analysis. Unweighted pair group method with arithmetic averages clustering resulted in a tree with four main clusters and one unclustered strain (MVG20), the principal coordinates analysis strain distribution pattern being consistent with this grouping. The obtained results suggest that the studied isolates belong to a clonal population having significant genetic diversity. Our genetic diversity results are comparable with those reported for other populations of M. tuberculosis, although only three RAPD primers were used.


2000 ◽  
Vol 23 (1) ◽  
pp. 189-199 ◽  
Author(s):  
Carlos Colombo ◽  
Gérard Second ◽  
André Charrier

This work focuses on the genetic diversity of American cassava through RAPD molecular markers. The 126 genotypes studied were distributed on four geographical levels ranging from local to continental. Samples included ethnocultivars from the Santa Isabel community in the Brazilian Amazon, local cultivars collected in the State of São Paulo, native accessions from very diverse Brazilian regions, and representative accessions from the Centro Internacional de Agricultura Tropical (CIAT) core collection. Eighty-eight polymorphic bands were analyzed. Results revealed the weak genetic structure of the cassava analyzed. The pattern formed by the first two axes of the principal coordinates analysis (PCoA) revealed an overlapping of the São Paulo State genotype, the Brazilian group and the core collection accessions. The Santa Isabel ethnocultures formed a separate group. The weak genetic structure of cassava can be explained by the common practice of exchanging botanical material among small producers as well as by recombinations among genotypes. When the genotypes were analyzed using climatic data, the sample sites were found to be structured according to temperature and precipitation. RAPD markers proved very useful in the genetic diversity study, resulting in important implications for cassava germ plasm collections and genetic breeding.


Sign in / Sign up

Export Citation Format

Share Document