Soil seed bank community structure of pastures and hayfields on an organic farm

2014 ◽  
Vol 94 (4) ◽  
pp. 621-631 ◽  
Author(s):  
Matt A. Sanderson ◽  
Robert Stout ◽  
Sarah Goslee ◽  
Jeff Gonet ◽  
Richard G. Smith

Sanderson, M. A., Stout, R., Goslee, S., Gonet, J. and Smith, R. G. 2014. Soil seed bank community structure of pastures and hayfields on an organic farm. Can. J. Plant Sci. 94: 621–631. Understanding the composition of seed banks in pasture soils would help farmers anticipate and manage for weed problems. We characterized the soil seed bank in eight pastures and hayfields [two alfalfa (Medicago sativa L.) and two predominantly grass hayfields; two recently established and two permanent pastures] within an organic dairy farm in southeastern New Hampshire. Seed banks were sampled in the upper 5 cm of soil in each field at a point scale in 2007 and 2010. In 2010, the seed bank was characterized at the field scale by taking soil samples on six 52-m transects in each field. Seed banks sampled at the field scale in 2010 contained 66 plant species. The total number of seeds in the seed bank ranged from 1560 m−2 in grass hayfields in autumn to more than 20 000 m−2 in alfalfa hayfields in summer. Annual forbs dominated the seed bank of alfalfa fields and recently established pastures, whereas perennial graminoids dominated in one grass hayfield and the permanent pastures. These results suggest that management history affects soil seed bank composition and abundance, and these effects should be considered before implementing management practices that could stimulate recruitment from the seed bank.

2004 ◽  
Vol 20 (6) ◽  
pp. 683-691 ◽  
Author(s):  
Bruno Hérault ◽  
Pierre Hiernaux

The soil seed bank in a 5-y-old Sahelian fallow was studied through seed extraction and compared with germinations recorded either in controlled conditions, ex situ in a glasshouse, or in the field. The influence of phosphorus fertilizer and mulch application during the preceding crop period, and that of seasonal grazing regimes applied the last 2 y of fallowing, were assessed on the composition of the seed stock. Ctenium elegans, Fimbristylis hispidula, Merremia pinnata and Phyllanthus pentandrus accounted together for 75% of extracted seeds, 72% of ex situ, and 62% of in situ seedlings. Mulch treatment was correlated with the first axis of the canonical correspondence analyses performed on the seedling datasets. Mulch and phosphorus fertilizer treatments held similar responses, as they both favoured the seed bank of erect dicotyledons such as P. pentandrus and Cassia mimosoides. On the whole, the effects of grazing remained modest compared with the residual effects of past crop management practices. However, seedling densities increased as a result of dry-season grazing, while the soil seed bank decreased with wet-season grazing. Grazing also reduced the spatial heterogeneity of the seed bank rather than the overall number of species.


2011 ◽  
Vol 79 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Maciej Wódkiewicz ◽  
Anna Justyna Kwiatkowska-Falińska

Forest seed banks mostly studied in managed forests proved to be small, species poor and not reflecting aboveground species composition. Yet studies conducted in undisturbed communities indicate a different seed bank characteristic. Therefore we aimed at describing soil seed bank in an undisturbed forest in a remnant of European lowland temperate forests, the Białowieża Forest. We compared similarity between the herb layer and seed bank, similarity of seed bank between different patches, and dominance structure of species in the herb layer and in the seed bank of two related oak-hornbeam communities. We report relatively high values of Sorensen species similarity index between herb layer and seed bank of both patches. This suggests higher species similarity of the herb layer and soil seed bank in natural, unmanaged forests represented by both plots than in fragmented communities influenced by man. Although there was a set of core seed bank species present at both plots, yielding high Sorensen species similarity index values, considerable differences between plots in seed bank size and dominance structure of species were found, indicating spatial variability of studied seed bank generated by edaphic conditions. Dominance structure of species in the herb layer was not reflected in the underlying seed bank. This stresses, that natural forest regeneration cannot rely only on the seed bank, although some forest species are capable of forming soil seed banks. While forest seed banks may not reflect vegetation composition of past successional stages, they may inform on history and land use of a specific plot.


Author(s):  
Ya-Fei Shi ◽  
Zengru Wang ◽  
Bing-Xin Xu ◽  
Jian-Qiang Huo ◽  
Rui Hu ◽  
...  

Soil seed banks may offer great potential for restoring and maintaining desert ecosystems that have been degraded by climate change and anthropogenic disturbance. However, few studies have explored the annual dynamics in the composition and relative abundance of these soil seed banks. We conducted a long-term observational study to assess the effects of environmental factors (meteorology and microtopography) and aboveground vegetation on the soil seed bank of the Tengger Desert, China. The desert seed bank was dominated by annual herbs. We found that more rainfall in the growing season increased the number of seeds in the soil seed bank, and that quadrats at relatively higher elevations had fewer seeds. The species composition had more similarity in the seed bank than in the aboveground vegetation, though the seed bank and aboveground vegetation did change synchronously due to the rapid propagation of annuals. Together, our findings suggest that the combined effects of environmental factors and plant life forms determine the species composition and size of soil seed banks in deserts. Thus, if degraded desert ecosystems are left to regenerate naturally, the lack of shrub and perennial herb seeds could crucially limit their restoration. Human intervention and management may have to be applied to enhance the seed abundance of longer-lived lifeforms in degraded deserts.


2020 ◽  
Vol 10 ◽  
pp. 1-14
Author(s):  
Charles N. Nyamwamu ◽  
Rebecca Karanja ◽  
Peter Mwangi

This study sought to determine the relation between soil weed seed bank and weed management practices and diversity in farms in Kisii Central Sub County, Western Kenya. Eight administrative sub-locations were randomly selected. Ten farms were selected at equal distance along transect laid across each sub-location. Weed soil seed bank was assessed from soil samples collected from each of the farms; a sub-sample was taken from a composite sample of ten soil cores of 5cm diameter and 15cm deep and placed in germination trays in a greenhouse. Weed diversity in soil weed seedbank was calculated using the Shannon index (H’). Twelve weed species from 12 genera of nine families were recorded. Diversity of the weed species in soil weed seed bank was (H'=1.48). Weed management practises significantly affected weed species soil weed seedbank reserves. Use of inefficient and ineffective hand-weeding techniques resulted in high weed species diversity and abundance.


Bothalia ◽  
2007 ◽  
Vol 37 (2) ◽  
pp. 249-258 ◽  
Author(s):  
M. J. S. Kellerman ◽  
M. W. Van Rooyen

Seasonal variation in seed bank size and species composition of five selected habitat types within the Tembe Elephant Park. South Africa, was investigated. At three-month intervals, soil samples were randomly collected from five different habitat types: a, Licuati forest; b, Licuati thicket; c, a bare or sparsely vegetated zone surrounding the forest edge, referred to as the forest/grassland ecotone; d, grassland; and e, open woodland. Most species in the seed bank flora were either grasses, sedges, or forbs, with hardly any evidence of woody species. The Licuati forest and thicket soils produced the lowest seed densities in all seasons.  Licuati forest and grassland seed banks showed a two-fold seasonal variation in size, those of the Licuati thicket and woodland a three-fold variation in size, whereas the forest/grassland ecotone maintained a relatively large seed bank all year round. The woodland seed bank had the highest species richness, whereas the Licuati forest and thicket soils were poor in species. Generally, it was found that the greatest correspondence in species composition was between the Licuati forest and thicket, as well as the forest/grassland ecotone and grassland seed bank floras.


2020 ◽  
Vol 13 (3) ◽  
pp. 256-265 ◽  
Author(s):  
José Djalma de Souza ◽  
Bruno Ayron de Souza Aguiar ◽  
Danielle Melo dos Santos ◽  
Vanessa Kelly Rodrigues de Araujo ◽  
Júlia Arruda Simões ◽  
...  

Abstract Aims In dry tropical forests, herbaceous species may have dormancy mechanisms and form persistent and transient seed banks in the soil. Evolutionarily acquired, these mechanisms are efficient for the establishment and survival of these herbs, especially in forests with unpredictable climates, such as the Caatinga. Thus, our objective was to verify whether the studied herbaceous species adopt the physical dormancy mechanism and how these natural barriers are overcome, to understand the temporal dynamics existing in the soil seed bank from a Brazilian dry tropical forest. Methods Seeds of five native herbaceous species from the Caatinga forests were selected and submitted to pre-germinative treatments for verifying the presence of physical dormancy. We collected soil samples in the rainy and dry seasons for four consecutive years and monitored the emergence of the selected herbaceous in the greenhouse. We verified the differences in germination and seed bank emergence in the soil by generalized linear models. Important Findings The presence and absence of physical dormancy were observed in seeds from Caatinga herbaceous species. We found intraspecific and interspecific differences in the herbaceous emergence from soil seed banks between years and climatic seasons. In perennial herbs, consecutive lack of emergence between seasons and years was frequent, which suggests a direct relationship with the mechanism of physical dormancy and the environmental conditions necessary to overcome integument barriers. In these species, seed dimorphism and dormancy may confer additional advantages to their survival. Moreover, presenting intermediate levels of physical dormancy in an annual species may be an evolutionary adjustment to rainfall unpredictability. In contrast, we found that the annual herb without dormancy is more sensitive to seasonal and interannual climate changes, as evidenced by the increase and significant reduction of its emergence in the soil seed bank. These differences acquired evolutionarily are advantageous for the establishment of herbaceous populations, mainly in semiarid regions with an unpredictable climate.


2008 ◽  
Vol 30 (2) ◽  
pp. 100-110 ◽  
Author(s):  
Fernanda Costa Maia ◽  
Manoel de Souza Maia ◽  
Renée M. Bekker ◽  
Rogério Previatti Berton ◽  
Leandro Sebastião Caetano

The objective of the study was to characterize annual ryegrass seed population dynamics, managed for natural re-sowing, in no til systems in rotation with soybean, in different chronosequences An area was cultivated for two years with soybean, left as fallow land for the next two years and then cultivated again with soybean for the next two years. The four chronosequences represented different management periods, two with soybean (6 and 8 years old) and the other two resting (3 and 9 years old). Soil samples were taken every month during one year and divided into two depths (0-5 and 5-10 cm). Vegetation dynamics were also evaluated (number of plants, inflorescences and seedlings). Soil seed bank (SSB) dynamics showed structural patterns in time, with a "storage period" in summer, an "exhausting period" during autumn and a "transition period" in winter and spring. Pasture establishment by natural re-sowing was totally dependent on the annual recruitment of seeds from the soil. The influence of the management practices on the SSB was more important than the number of years that these practices had been implemented. Places where soybean was sown showed the largest SSBs. Most of the seeds overcame dormancy and germinated at the end of the summer and beginning of the autumn, showing a typically transitory SSB, but with a small proportion of persistent seeds


2020 ◽  
Vol 42 (2) ◽  
pp. 85
Author(s):  
Annemieke Ruttledge ◽  
Ralph D. B. Whalley ◽  
Gregory Falzon ◽  
David Backhouse ◽  
Brian M. Sindel

A large and persistent soil seed bank characterises many important grass weeds, including Nassella trichotoma (Nees) Hack. ex Arechav. (serrated tussock), a major weed in Australia and other countries. In the present study we examined the effects of constant and alternating temperatures in regulating primary and secondary dormancy and the creation and maintenance of its soil seed bank in northern NSW, Australia. One-month-old seeds were stored at 4, 25°C, 40/10°C and 40°C, in a laboratory, and germination tests were conducted every two weeks. Few seeds germinated following storage at 4°C, compared with seeds stored at 25°C, 40/10°C and 40°C. Nylon bags containing freshly harvested seeds were buried among N. trichotoma stands in early summer, and germination tests conducted following exhumation after each season over the next 12 months. Seeds buried over summer and summer plus autumn had higher germination than seeds buried over summer plus autumn plus winter, but germination increased again in the subsequent spring. Seeds stored for zero, three, six and 12 months at laboratory temperatures were placed on a thermogradient plate with 81 temperature combinations, followed by incubation at constant 25°C of un-germinated seeds. Constant high or low temperatures prolonged primary dormancy or induced secondary dormancy whereas alternating temperatures tended to break dormancy. Few temperature combinations resulted in more than 80% germination.


2019 ◽  
Vol 41 (5) ◽  
pp. 383 ◽  
Author(s):  
Vinod K. Chejara ◽  
Paul Kristiansen ◽  
R. D. B. (Wal) Whalley ◽  
Brian M. Sindel ◽  
Christopher Nadolny

Hyparrhenia hirta (L.) Stapf (also known as Coolatai grass, South African bluestem or thatching grass) has become a serious invasive weed in Australia. Within its native range, it is generally regarded as a useful grass particularly for thatching, and seed production is low with a low soil seed bank of from 2 to 200seedsm–2. Several hundred accessions of H. hirta were deliberately introduced into Australia up until the 1980s and nearly all were discarded because of poor seed production. However, at least one introduction in the 1890s in northern New South Wales (NSW), Australia, has possibly contributed to the present serious weed problem. Annual seed production from roadside stands in northern NSW ranged from 7000 to 92000seedsm–2 in 2015. The soil seed bank under dense H. hirta infestations in the same region in 2006 and 2007, was found to be ~30000seedsm–2 mostly confined to the top 2cm, with few dormant seeds and a large reduction of these numbers over the next 12 months when further seed input was prevented. Similar studies of other perennial grass weeds have found seed banks of similar sizes, but dormancy mechanisms ensure that their seed banks last for at least 10 years without further seed input. These results suggest that the present weedy populations of H. hirta have dramatically increased fecundity enabling a large seed bank to develop beneath dense stands. The development of seed dormancy and consequently a long-lived seed bank would make this weed even more difficult to control. Until seed dormancy develops, control of H. hirta in northern NSW can be effective provided further input into the seed bank can be prevented.


1990 ◽  
Vol 38 (3) ◽  
pp. 261 ◽  
Author(s):  
AW Graham ◽  
MS Hopkins

The size and floristic composition of soil seed banks under four adjacent, unlogged and structurally different rainforest types were assessed by exposing 17 surface soil samples (to 40mm depth) to germination-house conditions. The mean size of the seed bank in the undisturbed forest types was 240 seeds m-2 (s.d. 139). Seeds of secondary species dominated the soil seed banks in all forest types, although weed seeds constituted only 0.6-4.0%. Some forest types had characteristic component secondary species in the buried seed bank. Agglomerative classification and multidimensional scaling analysis of quantitative sample data indicated that the parent structural-environmental forest type was the dominant influence in determining composition of the soil seed banks. Comparisons of the seed banks of the intact rainforest with those of nearby disturbed forests showed the former to be 35 to 50% smaller in total size, and lacking in some distinctive secondary species. It was concluded that disturbance, both within and adjacent to rainforest, may influence soil seed bank compositions, and hence future patterns of regeneration.


Sign in / Sign up

Export Citation Format

Share Document