COLD HARDINESS OF FORAGE GRASSES GROWN ON THE CANADIAN PRAIRIES

1987 ◽  
Vol 67 (4) ◽  
pp. 1111-1115 ◽  
Author(s):  
A. E. LIMIN ◽  
D. B. FOWLER

Cold hardiness ratings of 18 forage grass species, and cold hardy reference cultivars of winter wheat (Triticum aestivum L. ’Norstar’) and rye (Secale cereale L. ’Puma’), were compared to provide estimates of the winterkill risk for forage grasses established in the spring and fall on the Canadian prairies.Key words: Forage grasses, cold hardiness, seeding date, winter survival

1985 ◽  
Vol 65 (4) ◽  
pp. 893-900 ◽  
Author(s):  
D. W. A. ROBERTS

Nine cultivars of common wheat (Triticum aestivum L.) ranging from very cold hardy to tender were sprouted in vermiculite at 0.5–1.0 °C for 7 wk in the dark and then placed at 0.5 °C, −2.5 °C, −5 °C, −7.5 °C, or −10 °C for up to 20 wk. Plants held at 0.5 °C progressively lost hardiness. Little change occurred in the hardiness of plants moved to −2.5 °C. There was apparently a small initial increase in hardiness after transfer to −5 °C or −7.5 °C followed by a decline in hardiness. Plants transferred to −10 °C lost hardiness progressively after transfer. These results suggest that part of the reason for late-winter mortality of winter wheats in northern regions of the Canadian prairies is damage from long exposures to temperatures only slightly lower than −5 °C. This damage is manifested by higher LT50 values or lower cold hardiness in late winter and early spring.Key words: Triticum aestivum L., cold hardiness, winter survival


1985 ◽  
Vol 65 (3) ◽  
pp. 487-490 ◽  
Author(s):  
A. E. LIMIN ◽  
J. DVORAK ◽  
D. B. FOWLER

The excellent cold hardiness of rye (Secale cereale L.) makes it a potential source of genetic variability for the improvement of this character in related species. However, when rye is combined with common wheat (Triticum aestivum L.) to produce octaploid triticale (X Triticosecale Wittmack, ABDR genomes), the superior rye cold hardiness is not expressed. To determine if the D genome of hexaploid wheat might be responsible for this lack of expression, hexaploid triticales (ABR genomes) were produced and evaluated for cold hardiness. All hexaploid triticales had cold hardiness levels similar to their tetraploid wheat parents. Small gains in cold hardiness of less than 2 °C were found when very non-hardy wheats were used as parents. This similarity in expression of cold hardiness in both octaploid and hexaploid triticales indicates that the D genome of wheat is not solely, if at all, responsible for the suppression of rye cold hardiness genes. There appears to be either a suppressor(s) of the rye cold hardiness genes on the AB genomes of wheat, or the expression of diploid rye genes is reduced to a uniform level by polyploidy in triticale. The suppression, or lack of expression, of rye cold hardiness genes in a wheat background make it imperative that cold-hardy wheats be selected as parents for the production of hardy triticales.Key words: Triticale, Secale, winter wheat, cold hardiness, gene expression


1977 ◽  
Vol 57 (4) ◽  
pp. 1049-1054 ◽  
Author(s):  
D. B. FOWLER ◽  
L. V. GUSTA

Changes in cold hardiness (LT50), fresh weight, dry weight and moisture content were measured on crowns of winter wheat (Triticum aestivum L.) and rye (Secale cereale L.) taken from the field at weekly intervals in the spring of 1973 and 1974 at Saskatoon, Sask. In all trials, Frontier rye came out of the winter with superior cold hardiness and maintained a higher level of hardiness during most of the dehardening period. For cultivars of both species, rapid dehardening did not occur until the ground temperature at crown depth remained above 5 C for several days. Changes in crown moisture content tended to increase during dehardening. Over this same period crown dry weight increased for winter rye but did not show a consistent pattern of change for winter wheat. Two test sites were utilized in 1974. One site was protected by trees and the other was exposed. General patterns of dehardening were similar for these two sites, but cultivar winter field survival potentials were reflected only by LT50 ratings for the exposed test site. The influence of fall seeding date on spring dehardening was also investigated. Late-seeded wheat plots did not survive the winter in all trials. However, where there was winter survival, no differences in rate of dehardening due to seeding date were observed.


1983 ◽  
Vol 63 (4) ◽  
pp. 879-888 ◽  
Author(s):  
W. G. LEGGE ◽  
D. B. FOWLER ◽  
L. V. GUSTA

The cold hardiness of tillers separated from the plant immediately before freezing (CTM) or left intact on the crown (ICM) was determined by artificial freeze tests on two sampling dates for four winter wheat (Triticum aestivum L.) cultivars acclimated in the field. Plants with 9 and 13 tillers excluding coleoptile tillers were selected in mid-October and at the end of October, respectively. No differences in lethal dose temperature (LT50) were detected among CTM or ICM tillers sampled in mid-October. The three youngest CTM tillers sampled at the end of October were less cold hardy than older tillers. However, younger CTM tillers did not survive the unfrozen control treatment as well as older tillers. ICM tillers sampled at the end of October had the same LT50 except for one of the older tillers. No correlation was found between either the moisture content or dry weight and the LT50 of tillers. Winter survival of tillers was evaluated for two cultivars in the spring. Tillers of intermediate age and two of the youngest tillers had the highest survival rates. Tiller regeneration from axillary buds rather than the apical meristem occurred following cold stress and was negatively correlated to tiller emergence date. It was concluded that differences in cold hardiness among tillers must be taken into consideration if tillers are utilized to estimate the LT50 of a plant.Key words: Cold hardiness, tillers, winter wheat, Triticum aestivum L., developmental stage, moisture content


1986 ◽  
Vol 66 (3) ◽  
pp. 553-557 ◽  
Author(s):  
D. B. FOWLER

Winter wheat (Triticum aestivum L.) and rye (Secale cereale L.) were seeded into stubble the first week of September and October on four different years at a total of 11 sites in the central, eastern and northern part of the agricultural region of Saskatchewan. The average response to delayed seeding was a reduction in yield and hectolitre weight for both species. In contrast, date of seeding did not have a large influence on kernel size. A significant environmental effect was observed for all characters measured. Productivity of both wheat and rye was high when moisture conditions were adequate. Average yield of rye was higher and 1000-kernel and hectolitre weight lower than for wheat. Significant first and second order interactions demonstrated that the effects of seeding date, species and environment were not independent. These interactions were of sufficient magnitude to introduce a risk factor which should be taken into consideration when conclusions are drawn on the influence of seeding date on yield and other agronomic characters of stubble-seeded winter cereals.Key words: Triticum aestivum L., Secale cereale L., yield, hectolitre weight, kernel size, seeding date


1984 ◽  
Vol 26 (4) ◽  
pp. 405-408 ◽  
Author(s):  
A. E. Limin ◽  
D. B. Fowler

Many changes occur within the cytoplasm of plant cells during cold acclimation. However, the cause and effect relationship between cytoplasmic response to low temperature and the development of cold hardiness in cells has been difficult to determine. This study considered the importance of rye (Secale cereale L.) and wheat (Triticum aestivum L. and Triticum tauschii (Coss.) Schmal.) cytoplasmic effects in conditioning plant cold hardiness. The cold hardiness of octoploid triticale (× Triticosecale Wittmack) produced from hardy rye and nonhardy wheat was similar to that of the wheat parent, demonstrating a complete suppression of the rye cold hardiness genes. Similar observations were made for wheat – rye amphiploids from reciprocal crosses, indicating that this suppression was not due to cytoplasmic effects. It is more probable that, because the cold hardiness of octoploid triticale approximates that of the wheat parent, the cold hardiness potential of the rye genome is suppressed by a gene or genes in the wheat complement. The cold hardiness of alloplasmic rye with T. tauschii cytoplasm was similar to that of the rye parent indicating that the cold hardiness genes of rye have normal expression in the T. tauschii cytoplasm. Based on observations made in these two studies, it was concluded that the cytoplasm has little direct effect on cold hardiness, or on the nuclear expression of cold hardiness.Key words: cold hardiness, cytoplasm, Triticum aestivum L., triticale, alloplasmic rye.


1990 ◽  
Vol 70 (4) ◽  
pp. 1033-1041 ◽  
Author(s):  
J. B. THOMAS ◽  
R. A. BUTTS

Russian wheat aphid (RWA) (Diruaphis noxia (Mordvilko)) is a new and cold-hardy pest of temperate cereals in western Canada. In view of the risk of fall infestation of winter wheat (Triticum aestivum L. em. Thell.), this study was made to establish whether feeding by RWA can interfere with cold hardening and plant survival of overwintering winter wheat. Feeding by RWA significantly increased the LT50 of field-hardened Norstar winter wheat by + 2 to + 4 °C. Application of 400 g (a.i.) ha−1 of the insecticide chlorpyrifos in mid-October to control severe RWA infestations in two different fields of Norstar winter wheat significantly improved winter survival of the crop. The pattern of winterkill within the two fields suggested that this protective effect of chlorpyrifos was greatest in areas where microtopography resulted in the least accumulations of snow and cold stress was most intense. It was concluded that heavy RWA infestation in the fall significantly reduced freezing tolerance of winter wheat and increased the likelihood of winterkilling of the crop by severe cold.Key words: Winter survival, cold hardening, Diuraphis noxia, insecticide, chlorpyrifos, Triticum aestivum, crop damage


Genome ◽  
2005 ◽  
Vol 48 (4) ◽  
pp. 637-647 ◽  
Author(s):  
M A. Rouf Mian ◽  
Malay C Saha ◽  
Andrew A Hopkins ◽  
Zeng-Yu Wang

Microsatellites or simple sequence repeats (SSRs) are highly useful molecular markers for plant improvement. Expressed sequence tag (EST)-SSR markers have a higher rate of transferability across species than genomic SSR markers and are thus well suited for application in cross-species phylogenetic studies. Our objectives were to examine the amplification of tall fescue EST-SSR markers in 12 grass species representing 8 genera of 4 tribes from 2 subfamilies of Poaceae and the applicability of these markers for phylogenetic analysis of grass species. About 43% of the 145 EST-SSR primer pairs produced PCR bands in all 12 grass species and had high levels of polymorphism in all forage grasses studied. Thus, these markers will be useful in a variety of forage grass species, including the ones tested in this study. SSR marker data were useful in grouping genotypes within each species. Lolium temulentum, a potential model species for cool-season forage grasses, showed a close relation with the major Festuca–Lolium species in the study. Tall wheatgrass was found to be closely related to hexaploid wheat, thereby confirming the known taxonomic relations between these species. While clustering of closely related species was found, the effectiveness of such data in evaluating distantly related species needs further investigations. The phylogenetic trees based on DNA sequences of selected SSR bands were in agreement with the phylogenetic relations based on length polymorphism of SSRs markers. Tall fescue EST-SSR markers depicted phylogenetic relations among a wide range of cool-season forage grass species and thus are an important resource for researchers working with such grass species.Key words: phylogeny, EST-SSR, forage grasses, tall fescue.


Sign in / Sign up

Export Citation Format

Share Document