PERFORMANCE OF SOME NATIVE AND INTRODUCED GRASSES IN A SEMIARID REGION OF WESTERN CANADA

1989 ◽  
Vol 69 (1) ◽  
pp. 251-254 ◽  
Author(s):  
T. LAWRENCE ◽  
C. D. RATZLAFF

Twelve strains of native grasses which had undergone selection prior to testing were compared with three introduced grasses under the same management system. On the basis of the 5-yr mean D M yield, crested wheatgrass and meadow bromegrass produced 79% more forage than the native species. Crested wheatgrass and intermediate wheat-grass produced 167% more seed on average than other species. The native species, especially slender wheatgrass and awned wheatgrass suffered considerable winter injury and winter killing. This study supports the belief that most native grasses are shortlived and low-yielding compared to introduced species and that breeders should concentrate their efforts on the introduced species which have an inheritantly higher yield potential.Key words: native grasses, introduced grasses, Agropyron, Bromus, Elymus, Thinopyrum, winter killing, breeding

2014 ◽  
Vol 94 (7) ◽  
pp. 1139-1148 ◽  
Author(s):  
B. Biligetu ◽  
P. G. Jefferson ◽  
R. Muri ◽  
M. P. Schellenberg

Biligetu, B., Jefferson, P. G., Muri, R. and Schellenberg, M. P. 2014. Late summer forage yield, nutritive value, compatibility of warm-and cool-season grasses seeded with legumes in western Canada. Can. J. Plant Sci. 94: 1139–1148. In late summer and fall, quality and quantity of forage are important for weight gain by grazing animals in western Canada. The objective of this study was to evaluate forage nutritive value, dry matter (DM) yield, and compatibility of crested wheatgrass [Agropyron cristatum (L.) Gaertn.], meadow bromegrass (Bromus riparius Rehm.), green needle grass [Nasella viridula (Trin.) Barkworth], northern wheatgrass [Elymus lanceolatus (Scribn. & J. G. Sm.) Gould], western wheatgrass [Pascopyrum smithii (Rydb.) Barkworth & D.R. Dewey], Russian wildrye [Psathyrostachys juncea (Fisch.) Nevski], big bluestem (Andropogon gerardii Vitman), or switchgrass (Panicum virgatum L.) in eight grass monocultures, and their binary mixtures with alfalfa (Medicago sativa L.), sainfoin (Onobrychis viciifolia Scop.), or cicer-milkvetch (Astragalus cicer L.) harvested once in August or September. A field study was conducted over a 7-yr period from 1998 to 2004 near Swift Current (lat. 50°25'N, long. 107°44'W, 824 m elev.), SK, Canada, using a randomized complete block design. Forage DM yield was similar between August and September harvests (P>0.05). Binary mixtures of alfalfa–grass produced highest (P<0.05) DM yield ranging from 2449 to 2758 kg ha−1. The monoculture of crested wheatgrass (2143 kg ha−1), sainfoin with crested wheatgrass (2061 kg ha−1), and cicer-milkvetch with green needle grass (1838 kg ha−1) or cicer-milkvetch with western wheatgrass (1861 kg ha−1) produced the second highest (P<0.05) DM yields in the ranking. The two warm-season grasses produced the lowest (P>0.05) DM yields over the 7-yr period. Monocultures of green needle grass or northern wheatgrass had the highest acid detergent fiber (ADF) and neutral detergent fiber (NDF), while warm-season grasses with legumes had the lowest. Alfalfa with western wheatgrass and alfalfa with Russian wildrye had the highest crude protein (CP) concentrations. Monocultures of meadow bromegrass, crested wheatgrass, green needle grass, or cicer-milkvetch with meadow bromegrass, and sainfoin with crested wheatgrass had the lowest CP concentrations. In vitro organic matter digestibility (IVOMD) was greater for mixtures than for the grass monocultures. Concentration of Ca and P was greater for warm-season grasses than cool-season grasses. Alfalfa with western wheatgrass was the best combination considering yield, quality, and compatibility for deferred grazing in late summer and fall in the semiarid prairies. Tested warm-season grasses are not recommended for seeding as binary mixtures with legumes for southwestern Saskatchewan.


2008 ◽  
Vol 88 (3) ◽  
pp. 337-348 ◽  
Author(s):  
Sean R Murphy ◽  
Francis J Larney ◽  
Walter D Willms ◽  
Paul R DeMaere

Introduced perennial grass-based pastures (e.g., crested wheatgrass, Agropyron cristatum, and Russian wildrye, Elymus junceus) are promoted as desirable alternatives to natural grasslands (Stipa-Bouteloua-Agropyron spp.) for livestock production systems on the mixed-grass prairie of Alberta. A study was conducted on plots established in 1993 to examine the surface runoff response from natural grasslands, introduced grasses and spring wheat (Triticum aestivum L.) under simulated rainfall in response to pasture and soil characteristics. The grass plots were never grazed, but herbage growth was harvested on an annual basis, while wheat was seeded each year following tillage. Both wheat and crested wheatgrass were less able to retain applied water; with low initial abstraction (5.1–5.7mm), runoff peaked earlier (14–26 min) and with higher intensity (65.1–68.8mm h-1) giving larger values of the rising limb factor (0.61–1.10). Two grasslands dominated by native species showed more desirable runoff characteristics; with high initial abstraction (9.6–13.3mm), runoff peaked later (32–54 min) and with lower intensity (32.7–45.8mm h-1) giving smaller values of the rising limb factor (0.13–0.35). Russian wildrye had an intermediary response. A linear model identified that to reduce the rising limb factor and amount of runoff generated after 30 min, the antecedent conditions of ground cover (%), litter dry matter (DM) and dead herbage DM were singularly important variables and the native grasslands had significantly higher levels of these. Importantly, fine and medium litter fragments of natural grasslands had higher water-holding capacity (>3.0 g g-1) compared with litter of the introduced species (~2.5 g g-1). However, when variables were considered in combination runoff decreased with higher ground cover and increased with higher soil water content. Levels of total N and total P in surface runoff were generally low (< 2 mg N L-1, < 1 mg P L-1), but ammonium and reactive P export from the native species was greater than for the introduced species. Suspended sediment yield did not differ among the grassland treatments, but was significantly higher for wheat. Less runoff was generated on grasslands that had high amounts of litter, dead standing herbage and ground cover. Increasing the amount of litter in pastures by using grazing management may decrease the runoff response and so avoid loss of surface water and soil nutrients. Key words: Ground cover, litter, water quality, native grasses, nutrients


1999 ◽  
Vol 79 (4) ◽  
pp. 551-555 ◽  
Author(s):  
K. W. May ◽  
W. D. Willms ◽  
D. G. Stout ◽  
B. Coulman ◽  
N. A. Fairey ◽  
...  

There is an increasing demand to use native grass species for revegetating disturbed sites such as logged clearcuts. The value of such species is closely linked with their ability to produce seed. We compared seed yield of three native Bromus species (Bromus carinatus Hook. & Arn., B. ciliatus L., and B. anomalus Rupr. Ex Fourn.) and three domestic forage species (B. riparius Rehm., B. inermis Leyss., and Dactylis glomerata L.) and tested the hypothesis that native species divert fewer resources to reproductive growth than do domestic grasses. Six experiments were conducted at five locations in western Canada to evaluate the potential for seed yield from native brome. Bromus carinatus seeds ripened, on average, the first week of August, similar to B. riparius and D. glomerata, while seed of B. anomalus and B. ciliatus ripened about the third week of August, similar to B. inermis. Seed yields were highly variable among sites and between years. Over all sites, yields among species were not significantly different (P = 0.05). Mean second-year yield was less than half of that of the first harvest year. Yields of 2–3 t ha−1 were found for B. anomalus, B. ciliatus and B. inermis at certain sites. Seed yields were positively correlated to inflorescence number m−2 in both harvest years and to harvest index in the first harvest year. Based on seed yields that were similar to B. inermis in this study, it should be possible to produce sufficient quantities of reasonably priced seed of native Bromus species for the revegetation industry. Key words: Smooth bromegrass, meadow bromegrass, orchard grass, Bromus sp., Dactylis glomerata


1988 ◽  
Vol 120 (S144) ◽  
pp. 151-168 ◽  
Author(s):  
John R. Spence ◽  
D. Hughes Spence

AbstractAssemblages of carabid beetles occurring in anthropogenic habitats in western Canada include native and introduced species. In this study, about 70% of the native species encountered in anthropogenic habitats have their main centres of abundance in native grassland. Twenty species known from British Columbia are of recent European origin. These species were probably introduced in ballast carried by commercial sailing vessels or in shipments of nursery stock. The species that have successfully colonized western Canada cannot be distinguished from a random sample of the estimated source fauna with respect to either taxonomic distribution or body size. However, all introduced species are characteristic of disturbed and/or anthropogenic habitats in Great Britain and are strictly synanthropic in British Columbia. Where they occurred, introduced species were usually numerically dominant members of anthropogenic assemblages. Both flight and human-assisted transport must be invoked to explain the patterns of range expansion observed for introduced species. Although the presence of introduced species was correlated with reduced diversity of native species, the carabid fauna of western Canada has been generally enriched because only one native species is strictly synanthropic.


1987 ◽  
Vol 67 (3) ◽  
pp. 719-725 ◽  
Author(s):  
R. P. KNOWLES

Six Eurasian temperate zone grasses, one mixture of these, and three North American wheatgrasses were compared in mainly nonfertilized tests from 1974 to 1983 in Saskatchewan, Canada. Introduced grasses outyielded natives at Saskatoon when cut once per season as hay with the following declining yield order (kg/ha): intermediate wheatgrass (3819), standard crested wheatgrass (2906), smooth bromegrass (2841), Russian wild ryegrass (2311), Fairway crested wheatgrass (2218), meadow bromegrass (2082), slender wheatgrass (2011), western wheatgrass (1919), and northern wheatgrass (1683). Much the same order of yield was observed when these grasses were clipped two to three times per season, although meadow bromegrass and western wheatgrass performed relatively better. At the Scott site, standard crested wheatgrass and northern wheatgrass performed relatively better than at Saskatoon. Slightly lower in vitro digestibility ratings were shown for natives than for introduced species and this appeared to be due to the more rapid senescence of natives. Stands at Saskatoon were maintained for 10 yr for all species except slender wheatgrass which lasted 5 yr. Weed control was best for meadow bromegrass and smooth bromegrass and poorest for slender wheatgrass, northern wheatgrass, and Fairway crested wheatgrass. Fertilizer applied to older stands showed a greater response for introduced grasses than for natives.Key words: Grass species, productivity, hay, pasture, longevity


2009 ◽  
Vol 60 (10) ◽  
pp. 943 ◽  
Author(s):  
Z. N. Nie ◽  
R. P. Zollinger ◽  
J. L. Jacobs

This glasshouse study aimed to examine the performance of 7 Australian native grasses and their responses to different cutting and fertiliser regimes. The 7 native grasses comprised 2 wallaby grasses (Austrodanthonia bipartita cv. Bunderra and Austrodanthonia setacea, Woodhouse ecotype), 2 weeping grasses (Microlaena stipoides cv. Bremmer and ecotype Coleraine), 1 spear grass (Austrostipa mollis, ecotype Lexton), 1 red-leg grass (Bothriochlora macra, ecotype Hamilton), and 1 kangaroo grass (Themeda triandra, ecotype Yass). For each of the 7 grasses, 64 pots each containing 9 plants were arranged in a 4 cutting intensity × 4 fertiliser level factorial design with 4 replicates. The cutting intensity treatments involved (1) cutting to 2 cm at 3–5-week intervals; (2) cutting to 5 cm at 3–5-week intervals; (3) cutting to 10 cm at 3–5-week intervals; and (4) cutting to 2 cm based on leaf stage. The fertiliser regimes included low, medium, and high fertility treatments by applying various rates of phosphorus, and the treatment with addition of compost tea. Herbage accumulation, shoot and root growth, plant survival and tiller density, nutritive characteristics, and leaf stage were monitored. All grass lines produced the lowest herbage mass when cut to 2 cm above ground at 3–5-week intervals. Cutting to 5 cm or to 2 cm based on leaf stage favoured herbage accumulation of Lexton spear grass, Hamilton red grass, Yass kangaroo grass, and Coleraine weeping grass. Cutting to 10 cm favoured herbage accumulation of Bremmer weeping grass and wallaby grass. Cutting to 10 cm together with high fertiliser application considerably increased herbage accumulation in comparison with treatments with low fertiliser application or with compost tea. Shoot and root biomass were maximised when plants were cut to 10 cm above ground, except Lexton spear grass which had highest root biomass when plants were managed based on leaf stage. Plant survival was dramatically affected by defoliation intensity and varied among species. Plant survival declined when plants were cut to 2 cm above ground for most species. Overall, native grasses were considered to have good nutritive characteristics with crude protein ranging from 17 to 22% and neutral detergent fibre from 48 to 60%. Results from this study indicate that it may be possible to use leaf stage as a determinant for the commencement of grazing native species. Optimum leaf stages that could be used as a grazing management guide were on average 3.4 for wallaby grass, 4.2 for weeping grass, 3 for spear grass, 3.8 for red-leg grass, and 4.4 for kangaroo grass. However, further work is required to better define this for likely seasonal variation between C3 and C4 species.


2010 ◽  
Vol 26 (3) ◽  
pp. 347-350 ◽  
Author(s):  
Jannie Fries Linnebjerg ◽  
Dennis M. Hansen ◽  
Nancy Bunbury ◽  
Jens M. Olesen

Disruption of ecosystems is one of the biggest threats posed by invasive species (Mack et al. 2000). Thus, one of the most important challenges is to understand the impact of exotic species on native species and habitats (e.g. Jones 2008). The probability that entire ‘invasive communities’ will develop increases as more species establish in new areas (Bourgeois et al. 2005). For example, introduced species may act in concert, facilitating one another's invasion, and increasing the likelihood of successful establishment, spread and impact. Simberloff & Von Holle (1999) introduced the term ‘invasional meltdown’ for this process, which has received widespread attention since (e.g. O'Dowd 2003, Richardson et al. 2000, Simberloff 2006). Positive interactions among introduced species are relatively common, but few have been studied in detail (Traveset & Richardson 2006). Examples include introduced insects and birds that pollinate and disperse exotic plants, thereby facilitating the spread of these species into non-invaded habitats (Goulson 2003, Mandon-Dalger et al. 2004, Simberloff & Von Holle 1999). From a more general ecological perspective, the study of interactions involving introduced and invasive species can contribute to our knowledge of ecological processes – for example, community assembly and indirect interactions.


2021 ◽  
Vol 41 (3) ◽  
pp. 358-366
Author(s):  
Peter B. Banks

Distinguishing between whether a species is alien or native can be problematic, especially for introduced species that are long-established in new areas outside of their natural range. Transport by humans is the criterion for alien status used by many definitions, whereas arbitrary time since arrival to a location is often used to define native status. Here I propose an eco-evolutionary approach to distinguish between alien and native status and use this to resolve uncertainty in the status of the dingo in Australia. Dingoes were transported to mainland Australia by humans, but more than 4000 years ago, and dingoes now interbreed with feral domestic dogs. Legally, this mix of events has the dingo classified as native in some jurisdictions and alien in others. I suggest that native status for introduced species should be based on (1) whether the species has evolved in their new environment; (2) whether local species recognise and respond to them as they do towards deep endemic native species, and; (3) whether their impacts benchmark against those of a native species or are exaggerated like those of other alien species. Dingoes are behaviourally, reproductively and morphologically different to close ancestors from south-east Asia, and this difference has a genetic basis indicative of evolution in Australia. There is abundant evidence that native prey species on mainland Australia recognise and respond to them as a dangerous predator, which they are. But there is strong evidence that dingo impacts on prey are not exaggerated, with effect sizes from mensurative experiments similar to those of experiments on native predators rather than alien predators. These three lines of evidence suggest dingoes should be considered native to mainland Australia. I suggest this eco-evolutionary approach to defining native status can be helpful in resolving the often-heated debates about when an alien species becomes native.


2016 ◽  
Vol 76 (2) ◽  
pp. 341-351
Author(s):  
L. F. C. Rezende ◽  
B. C. Arenque-Musa ◽  
M. S. B. Moura ◽  
S. T. Aidar ◽  
C. Von Randow ◽  
...  

Abstract The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga.


2011 ◽  
Vol 25 (2) ◽  
pp. 346-362
Author(s):  
Edson Luís de Carvalho Soares ◽  
Márcia Vignoli-Silva ◽  
Lilian Auler Mentz

This work consists of a taxonomic synopsis of the genera of Solanaceae in Rio Grande do Sul state, Brazil. Solanaceae is represented by 28 genera in this state: Acnistus Schott, Athenaea Sendtn., Aureliana Sendtn., Bouchetia Dunal, Browalia L., Brugmansia Pers., Brunfelsia L., Calibrachoa La Llave & Lex., Capsicum L., Cestrum L., Datura L., Dyssochroma Miers, Grabowskia Schltdl., Jaborosa Juss., Lycianthes (Dunal) Hassl., Melananthus Walp., Nicandra Adans., Nicotiana L., Nierembergia Ruiz & Pav., Petunia Juss., Physalis L., Salpichroa Miers, Schwenckia L., Sessea Ruiz & Pav., Solandra Sw., Solanum L. (including Cyphomandra Sendtn. and Lycopersicon Mill.), Streptosolen Miers and Vassobia Rusby. Of these, 23 consist of native species , while five are represented exclusively by introduced species. The total number of species is 149, of which 118 are native and 31 are introduced (adventitious or cultivated). An identification key for genera, and also comments on the most relevant taxonomic characters of each one are presented, plus comments on the species that occur in Rio Grande do Sul state.


Sign in / Sign up

Export Citation Format

Share Document