Integration of cover crops into no-till and ridge-till wheat (Triticum aestivum L.) – corn (Zea mays L.) cropping sequence

1996 ◽  
Vol 76 (1) ◽  
pp. 85-91 ◽  
Author(s):  
C. J. Swanton ◽  
K. Chandler ◽  
K. J. Janovicek

The use of underseeded red clover (Trifolium pratense L.) as a cover crop in winter wheat has been declining because of poor clover establishment during dry growing seasons, the lack of selective herbicides for weed control in clover, and the difficulty in using burn-down herbicides to remove the clover before planting no-till corn. During 1990–1992, we conducted on-farm trials on silt loam no-till and sandy ridge-till fields in southern Ontario to evaluate the establishment and growth of alternative stubble-seeded cover crops following wheat and their effects on subsequent weed and volunteer wheat growth. In general, oats (Avena sativa L.), oilseed radish (Raphanus sativus L.), and barley (Hordeum vulgare L.) produced more biomass than the other stubble-seeded cover crops, hairy vetch (Vicia villosa Roth.), red clover, and buckwheat (Fagopyrum esculentum L.). In comparison, winter-hardy underseeded hairy vetch and red clover produced the most biomass and provided better weed control; however, any reduction in herbicide use is offset by the need to burn down these cover crops. An evaluation of cover-crop effects on post-wheat-harvest weed growth was not possible because of sparse and variable weed growth, which occurred even in the absence of a cover crop. However, volunteer wheat biomass was inversely correlated with cover-crop biomass. At the no-till site, cover-crop response to straw baling and the subsequent effects on weed and volunteer wheat growth and corn performance also were evaluated. Straw baling had minimal effects on cover-crop growth; however, volunteer wheat growth doubled. No-till corn was not adversely affected by the amounts of residue present where cover crops were established the previous year. Importantly, reducing the amount of wheat straw by baling increased early-season growth rates and corn grain yield by 0.91 Mg ha−1. We conclude that alternative stubble-seeded cover crops, such as oats, barley and oilseed radish, are suitable for no-till corn. At present, cover crops augment weed management but are not a substitute for herbicides, as burn-down herbicides are required to remove existing weeds or winter-hardy cover crops. Key words: Underseeded, stubble seeded, baling, volunteer wheat

1993 ◽  
Vol 7 (2) ◽  
pp. 425-430 ◽  
Author(s):  
Gregg A. Johnson ◽  
Michael S. Defelice ◽  
Zane R. Helsel

Field experiments were conducted in central Missouri in 1989 and 1990 to evaluate weed control practices in conjunction with cover crops and cover management systems in reduced tillage corn. There was no difference in weed control among soybean stubble, hairy vetch, and rye soil cover when averaged over cover management systems and herbicide treatments. However, mowed hairy vetch and rye covers provided greater weed control in the no-till plots than soybean stubble when no herbicide was used. Differences in weed control among cover management systems were reduced or eliminated when a PRE herbicide was applied. corn population and height were reduced by hairy vetch and rye soil cover. Corn grain yield was reduced in rye plots both years. There was no difference in grain yield between tilled and no-till plots.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 840 ◽  
Author(s):  
Ahmed Laamrani ◽  
Paul R. Voroney ◽  
Aaron A. Berg ◽  
Adam W. Gillespie ◽  
Michael March ◽  
...  

The impacts of tillage practices and crop rotations are fundamental factors influencing changes in the soil carbon, and thus the sustainability of agricultural systems. The objective of this study was to compare soil carbon status and temporal changes in topsoil from different 4 year rotations and tillage treatments (i.e., no-till and conventional tillage). Rotation systems were primarily corn and soy-based and included cereal and alfalfa phases along with red clover cover crops. In 2018, soil samples were collected from a silty-loam topsoil (0–15 cm) from the 36 year long-term experiment site in southern Ontario, Canada. Total carbon (TC) contents of each sample were determined in the laboratory using combustion methods and comparisons were made between treatments using current and archived samples (i.e., 20 year and 9 year change, respectively) for selected crop rotations. Overall, TC concentrations were significantly higher for no-till compared with conventional tillage practices, regardless of the crop rotations employed. With regard to crop rotation, the highest TC concentrations were recorded in corn–corn–oats–barley (CCOB) rotations with red clover cover crop in both cereal phases. TC contents were, in descending order, found in corn–corn–alfalfa–alfalfa (CCAA), corn–corn–soybean–winter wheat (CCSW) with 1 year of seeded red clover, and corn–corn–corn–corn (CCCC). The lowest TC concentrations were observed in the corn–corn–soybean–soybean (CCSS) and corn–corn–oats–barley (CCOB) rotations without use of cover crops, and corn–corn–soybean–winter wheat (CCSW). We found that (i) crop rotation varieties that include two consecutive years of soybean had consistently lower TC concentrations compared with the remaining rotations; (ii) TC for all the investigated plots (no-till and/or tilled) increased over the 9 year and 20 year period; (iii) the no-tilled CCOB rotation with 2 years of cover crop showed the highest increase of TC content over the 20 year change period time; and (iv) interestingly, the no-till continuous corn (CCCC) rotation had higher TC than the soybean–soybean–corn–corn (SSCC) and corn–corn–soybean–winter wheat (CCSW). We concluded that conservation tillage (i.e., no-till) and incorporation of a cover crop into crop rotations had a positive effect in the accumulation of TC topsoil concentrations and could be suitable management practices to promote soil fertility and sustainability in our agricultural soils.


2000 ◽  
Vol 80 (2) ◽  
pp. 441-449 ◽  
Author(s):  
J. R. Moyer ◽  
R. E. Blackshaw ◽  
E. G. Smith ◽  
S. M. McGinn

Cropping systems in western Canada that include summer fallow can leave the soil exposed to erosion and require frequent weed control treatments. Cover crops have been used for soil conservation and to suppress weed growth. Experiments were conducted under rain-fed conditions at Lethbridge, Alberta to determine the effect of short-term fall rye (Secale cereale L.), winter wheat (Triticum aestivum L.) and annual rye cover crops in the fallow year on weed growth and subsequent wheat yield. Under favorable weather conditions fall rye was as effective as post-harvest plus early spring tillage or herbicides in spring weed control. Winter wheat and fall rye residues, after growth was terminated in June, reduced weed biomass in September by 50% compared to no cover crop in 1993 but had little effect on weeds in 1995. Fall-seeded cover crops reduced the density of dandelion (Taraxacum officinale Weber in Wiggers) and Canada thistle [Cirsium arvense (L.) Scop.] but increased the density of downy brome (Bromus tectorum L.), wild buckwheat (Polygonum convolvulus L.), and thyme-leaved spurge (Euphorbia serpyllifolia Pers.) in the following fall or spring. Wheat yields after fall rye and no cover crop were similar but yields after spring-seeded annual rye were less than after no cover crop. Spring-seeded annual rye did not adequately compete with weeds. Cover crops, unlike the no cover crop treatment, always left sufficient plant residue to protect the soil from erosion until the following wheat crop was seeded. Key words: Allelopathies, fall rye, nitrogen, soil conservation, soil moisture, weed control, spring rye, winter wheat


Weed Science ◽  
2010 ◽  
Vol 58 (3) ◽  
pp. 300-309 ◽  
Author(s):  
Adam S. Davis

Termination of cover crops prior to no-till planting of soybean is typically accomplished with burndown herbicides. Recent advances in cover-crop roller–crimper design offer the possibility of reliable physical termination of cover crops without tillage. A field study within a no-till soybean production system was conducted in Urbana, IL, from 2004 through 2007 to quantify the effects of cover crop (cereal rye, hairy vetch, or bare soil control), termination method (chemical burndown or roller–crimper), and postemergence glyphosate application rate (0, 1.1, or 2.2 kg ae ha−1) on soybean yield components, weed–crop interference, and soil environmental variables. Biomass of weeds surviving management within a soybean crop following either a vetch or rye cover crop was reduced by 26 and 56%, respectively, in the rolled system compared to the burndown system. Soybean yield loss due to weed interference was unaffected by cover-crop termination method in soybean following a rye cover crop, but was higher in the rolled than burndown treatment in both hairy vetch and bare soil treatments. In soybean following a rye cover crop, regardless of termination method, yield loss to weed interference was unaffected by glyphosate rate, whereas in soybean following a vetch cover crop or bare soil, yield loss decreased with glyphosate rate. Variation in soybean yield among cover crops and cover-crop termination treatments was due largely to differences in soybean establishment, rather than differences in the soil environment. Use of a roller–crimper to terminate a cover crop preceding no-till soybean has the potential to achieve similar yields to those obtained in a chemically terminated cover crop while reducing residual weed biomass.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Ted S. Kornecki ◽  
Corey M. Kichler

In a no-till system, there are many different methods available for terminating cover crops. Mechanical termination, utilizing rolling and crimping technology, is one method that injures the plant without cutting the stems. Another popular and commercially available method is mowing, but this can cause problems with cover crop re-growth and loose residue interfering with the planter during cash crop planting. A field experiment was conducted over three growing seasons in northern Alabama to determine the effects of different cover crops and termination methods on cantaloupe yield in a no-till system. Crimson clover, cereal rye, and hairy vetch cover crops were terminated using two different roller-crimpers, including a two-stage roller-crimper for four-wheel tractors and a powered roller-crimper for a two-wheel walk-behind tractor. Cover crop termination rates were evaluated one, two, and three weeks after termination. Three weeks after rolling, a higher termination rate was found for flail mowing (92%) compared to lower termination rates for a two-stage roller (86%) and powered roller-crimper (85%), while the control termination rate was only 49%. There were no significant differences in cantaloupe yield among the rolling treatments, which averaged 38,666 kg ha−1. However, yields were higher for cereal rye and hairy vetch cover crops (41,785 kg ha−1 and 42,000 kg ha−1) compared to crimson clover (32,213 kg ha−1).


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 664c-664 ◽  
Author(s):  
Nancy G. Creamer ◽  
Mark A. Bennett ◽  
Benjamin R. Stinner

Polyculture mixtures of several species of cover crops may be the best way to optimize some of the benefits associated with cover crop use. In the first year of a three year study, 16 polyculture mixtures of cover crops (4 species/mixture) were screened at seven sites throughout the state. Five of the mixtures were seeded at two planting dates. Fall evaluation of the cover crop mixtures included ease of establishment, vigor, percent groundcover, plant height, and relative biomass. The two mixtures with the highest percent groundcover were (1): sudex, rye, mammoth red clover, and subterranean clover (62% and 80% groundcover, one and two months after planting respectively), and, (2), annual alfalfa, hairy vetch, ryegrass, and rye (56% and 84% groundcover one and two months after planting respectively). The six mixtures with the highest percent groundcover did consistently well, relative to other mixtures, at all locations. Mixture (1) above also had the highest relative biomass throughout the state. Yellow and white sweet clovers, hairy vetch, winter oats, subterranean clover, red clover, rye and barley established well and maintained high vigor ratings throughout the fall. Ladino clover, timothy, and big flower vetch consistently had poor vigor ratings.


Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 355-361 ◽  
Author(s):  
Nilda R. Burgos ◽  
Ronald E. Talbert

Studies were conducted at the Main Agricultural Experiment Station in Fayetteville and the Vegetable Substation in Kibler, Arkansas, in 1992 and 1993 on the same plots to evaluate weed suppression by winter cover crops alone or in combination with reduced herbicide rates in no-till sweet corn and to evaluate cover crop effects on growth and yield of sweet corn. Plots seeded to rye plus hairy vetch, rye, or wheat had at least 50% fewer early season weeds than hairy vetch alone or no cover crop. None of the cover crops reduced population of yellow nutsedge. Without herbicides, hairy vetch did not suppress weeds 8 wk after cover crop desiccation. Half rates of atrazine and metolachlor (1.1 + 1.1 kg ai ha−1) reduced total weed density more effectively in no cover crop than in hairy vetch. Half rates of atrazine and metolachlor controlled redroot pigweed, Palmer amaranth, and goosegrass regardless of cover crop. Full rates of atrazine and metolachlor (2.2 + 2.2 kg ai ha−1) were needed to control large crabgrass in hairy vetch. Control of yellow nutsedge in hairy vetch was marginal even with full herbicide rates. Yellow nutsedge population increased and control with herbicides declined the second year, particularly with half rates of atrazine and metolachlor. All cover crops except hairy vetch alone reduced emergence, height, and yield of sweet corn. Sweet corn yields from half rates of atrazine and metolachlor equalled the full rates regardless of cover crops.


Agriculture ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 172
Author(s):  
Merili Toom ◽  
Sirje Tamm ◽  
Liina Talgre ◽  
Ilmar Tamm ◽  
Ülle Tamm ◽  
...  

Using cover crops in fallow periods of crop production is an important management tool for reducing nitrate leaching and therefore improving nitrogen availability for subsequent crops. We estimated the short-term effect of five cover crop species on the yield of successive spring barley (Hordeum vulgare L.) for two years in Estonia. The cover crop species used in the study were winter rye (Secale cereale L.), winter turnip rape (Brassica rapa spp. oleifera L.), forage radish (Raphanus sativus L. var. longipinnatus), hairy vetch (Vicia villosa Roth), and berseem clover (Trifolium alexandrinum L.). The results indicated that out of the five tested cover crops, forage radish and hairy vetch increased the yield of subsequent spring barley, whereas the other cover crops had no effect on barley yield. All cover crop species had low C:N ratios (11–17), suggesting that nitrogen (N) was available for barley early in the spring.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 995-1001 ◽  
Author(s):  
Robert S. Gallagher ◽  
John Cardina ◽  
Mark Loux

The integration of cover crops with selected postemergence herbicides was evaluated on the basis of weed control and grain yields in no-till soybean and corn. Soybean was planted into wheat residue, whereas corn was planted into hairy vetch residue. Full, half, and quarter rates and sequential herbicide applications were made. The wheat cover crop did not increase weed suppression but increased soybean grain yields. Half rates of thifensulfuron plus quizalofop-P as single or split applications were as effective as full rates in reducing weed weight in soybean. Soybean grain yields were similar in the half- and full-rate treatments in 1994, but yield was highest in the full-rate treatment in 1995. The hairy vetch cover crop did not increase weed suppression but lowered corn stands and grain yields in 1995 and enhanced corn grain yields in 1996. Full, half, and quarter rates (1996 only) of nicosulfuron plus primisulfuron were equally effective in reducing weed weight. Corn grain yields were similar at all herbicide rates in 1995 but were inversely related to herbicide rate in 1996. Split herbicide applications did not improve weed suppression over single applications of the same herbicide rate in either crop. Results indicate that cover crops can improve crop productivity and reduced rates of environmentally benign herbicides can minimize the herbicide requirements in no-till corn and soybean.


2018 ◽  
Vol 32 (3) ◽  
pp. 251-259 ◽  
Author(s):  
David Miville ◽  
Gilles D. Leroux

AbstractWeed control is a challenging aspect of pumpkin production. Winter rye mulches may offer growers a means to manage weeds in pumpkin; however, rye degradation leads to an immobilization of soil nitrogen. Combining winter rye with a nitrogen fixing legume such as hairy vetch is an interesting option that may solve this problem. Twelve combinations including three hairy vetch seeding rates, two termination dates and the use or not of glyphosate before rolling cover crops were studied during the 2013 and 2014 growing seasons at the Laval University Agronomic Station in Saint-Augustin-de-Desmaures, Quebec, Canada to evaluate weed control and effects on pumpkin production. Adding hairy vetch to winter rye provided no benefits because of severe winterkill of the legume. Using glyphosate was necessary to prevent rye regrowth. Pumpkin growth was better and yields were higher than in the plots were no glyphosate was used. Mulches established at flowering (Zadoks 69) provided about 2,000 kg ha−1 more aboveground dry biomass than at early heading (Zadoks 51). This high biomass was essential in glyphosate treated plots in order to maintain excellent weed control throughout the growing season. When compared with the no-mulch weed-free control, yield in Zadoks 69+glyphosate treatment was lower in 2013 but comparable in 2014.


Sign in / Sign up

Export Citation Format

Share Document