scholarly journals COVER CROP MIXTURES FOR VEGETABLE PRODUCTION

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 664c-664 ◽  
Author(s):  
Nancy G. Creamer ◽  
Mark A. Bennett ◽  
Benjamin R. Stinner

Polyculture mixtures of several species of cover crops may be the best way to optimize some of the benefits associated with cover crop use. In the first year of a three year study, 16 polyculture mixtures of cover crops (4 species/mixture) were screened at seven sites throughout the state. Five of the mixtures were seeded at two planting dates. Fall evaluation of the cover crop mixtures included ease of establishment, vigor, percent groundcover, plant height, and relative biomass. The two mixtures with the highest percent groundcover were (1): sudex, rye, mammoth red clover, and subterranean clover (62% and 80% groundcover, one and two months after planting respectively), and, (2), annual alfalfa, hairy vetch, ryegrass, and rye (56% and 84% groundcover one and two months after planting respectively). The six mixtures with the highest percent groundcover did consistently well, relative to other mixtures, at all locations. Mixture (1) above also had the highest relative biomass throughout the state. Yellow and white sweet clovers, hairy vetch, winter oats, subterranean clover, red clover, rye and barley established well and maintained high vigor ratings throughout the fall. Ladino clover, timothy, and big flower vetch consistently had poor vigor ratings.

2005 ◽  
Vol 82 (1) ◽  
pp. 13-23 ◽  
Author(s):  
A.W. McKeown ◽  
J.W.. Potter

Studies were conducted at Simcoe, Ontario from 1992 to 1996 to evaluate various cover crop species as possible alternatives to fumigation prior to potatoes (Solanum tuberosum). Cereal rye (Secale cereale), a common overwinter cover crop in vegetable production systems, is an excellent host for the root-lesion nematode (Pratylenchus penetrans) and provides a suitable overwintering host on coarse sandy soils. Vorlex Plus CP and Telone IIB fumigants were compared to 'Domo' mustard (Brassica juncea) for the 1993 and 1994 potato crop years. Rye plus red clover (Trifolium pratense) was included as a known host cover crop system. Cyanogenic plants including 'Domo' mustard (1994) or 'Cutlass' mustard (1995, 1996), 'Forge' canola (Brassica rapa), 'Sordan 79' and 'Trudan 8' sorghum-sudangrass hybrids (Sorghum bicolor), and flax (Linum usitatissimum) were compared to Vorlex Plus CP fumigant and 'NK557' sorghum (Sorghum vulgare) for effects on potato yield and nematodes. Shallow (15 cm) and deep (45 cm) fumigation with Vorlex Plus CP were also compared prior to potatoes for the 1994 to 1996 crop years. There was little detectable difference in percent or days to 50% emergence of potatoes following any treatment. Highest total and marketable yields resulted from Telone IIB fumigation, then Vorlex Plus CP fumigation and 'Domo' mustard, followed by control and rye plus red clover cover. Populations of nematodes surpassed the threshold of 1000 kg-1 soil in all treatments and were highest in potatoes following rye plus red clover. Yield and nematode control following sorghum-sudangrass hybrids and mustards appeared to be intermediate between fumigated and not fumigated. All of the cover crops appeared to be root-lesion nematode hosts in the field, and reduction of population levels appeared to result after incorporation or nematode winterkill. Nematode mortality was excellent with fumigation and next best from kill over the winter after 'Sordan 79' incorporation. 'Sordan 79' grown over at least part of the summer followed by incorporation was an alternative to fumigation prior to potatoes. Deep chiselling appears to reduce nematode population, possibly by physical action. Where nematode populations warrant, deep fumigation prior to potatoes appears to be of merit.


HortScience ◽  
1997 ◽  
Vol 32 (5) ◽  
pp. 866-870 ◽  
Author(s):  
Nancy G. Creamer ◽  
Mark A. Bennett ◽  
Benjamin R. Stinner

Planting polyculture mixtures of cover crops can optimize the benefits of their use. Thirteen polyculture mixtures of cover crops were evaluated in Columbus and Fremont, Ohio, to find a species mix that would establish quickly for erosion control, overwinter in Ohio, contribute sufficient N and have a C : N ratio between 20:1 and 30:1 to optimize N availability for subsequent crops, be killable by mechanical methods, and have high weed control potential. All of the mixtures in Columbus had achieved 30% ground cover 1 month after planting, but only four of the mixtures achieved this in Fremont due to poor conditions at planting. Above-ground biomass (AGB) accumulation in the mixtures ranged from 3631 to 13,642 kg·ha-1 in Columbus, and 449 to 12,478 kg·ha-1 in Fremont. Nitrogen in the AGB ranged from 74 to 269 kg·ha-1 in Columbus, and 10 to 170 kg·ha-1 in Fremont. Weed cover in the cover crop plots ranged from 1% to 91% eight weeks after cover crop kill in Columbus, and 12% to 90% seven weeks after cover crop kill in Fremont. Because one or more species in each screened mixture was determined not to be suitable, none of the mixtures was optimum. However, information gained about performance of individual species within the mixtures is also useful. `Nitro' alfalfa (Medicago sativa L.), ladino clover (Trifolium repense L.), subterranean clover (Trifolium subterraneum L.), Austrian winter peas [Pisum sativum ssp. Arvense (L.) Poir], and annual ryegrass (Lolium multiflorum Lam.) did not overwinter dependably in Ohio. Tall fescue (Festuca arundinacea L.), perennial ryegrass (Lolium perenne L.), and orchardgrass (Dactylis glomerata L.) did not compete well with taller, more vigorous species, and were not persistent in the mixtures. Medium and mammoth red clover (Trifolium pratense L.), annual and perennial ryegrass, and white and yellow blossom sweetclover [Melilotus alba Desr., and Melilotus officianalis (L). Desr.], were not killable by mechanical methods. Individual species that established quickly, were competitive in the mixtures, overwintered dependably, and were killed by mechanical methods were rye (Secale cereale L.), barley (Hordeum vulgare L.), crimson clover (Trifolium incarnatum L.), and hairy vetch (Vicia villosa Roth.)


1990 ◽  
Vol 4 (2) ◽  
pp. 332-336 ◽  
Author(s):  
James L. Griffin ◽  
Seth M. Dabney

Field studies were conducted to compare preplant-postemergence-applied paraquat, glyphosate, SC-0224, and HOE-39866 on subterranean clover, crimson clover, and hairy vetch cover crops. Subterranean clover control with paraquat at 1.1 kg ai/ha was about 80 and 100% when applied in early April and early May, respectively, regardless of spray volume (190 vs. 370 L/ha). Glyphosate and SC-0224 at 1.7 and 2.8 kg ai/ha applied in April controlled about 53% of subterranean clover. Subterranean clover control with HOE-39866 at 0.8 kg ai/ha applied in April was excellent. Paraquat at 0.6 kg ai/ha and HOE-39866 at 0.8 kg/ha regardless of application time controlled both crimson clover and hairy vetch. Grain sorghum and soybean yields following the legume cover crops generally were similar for the herbicide treatments.


1995 ◽  
Vol 10 (4) ◽  
pp. 157-162 ◽  
Author(s):  
N.G. Creamer ◽  
B. Plassman ◽  
M.A. Bennett ◽  
R.K. Wood ◽  
B.R. Stinner ◽  
...  

AbstractResidues of dead cover crops can suppress weeds by providing a mulch on the soil surface. The cover crop usually is killed with herbicides, but a mechanical method is desirable in systems intended to reduce chemical use. We designed and built an undercutter to kill cover crops by severing their roots while flattening the intact aboveground biomass on the surface of raised beds. We studied which cover crop species could be killed with the undercutter and compared the weed control potential of cover crop residues after flail mowing, sicklebar mowing, and undercutting.Whether a species was killed by the undercutter depended primarily on growth stage. Species that were in mid- to late bloom or beyond, including rye, hairy vetch, bigflower vetch, crimson clover, barley, and subterranean clover, were easily killed by undercutting. There were no differences in dry weights of broadleaf weeds between the undercut and simulated sicklebar mowed treatments, both of which had less weed biomass than the clean-tilled or flail-mowed plots.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 983
Author(s):  
Peyton Ginakes ◽  
Julie M. Grossman

Winter annual legume cover crops often fail to reach full maturity by spring vegetable planting dates in northern climates, which prevents maximum nitrogen (N) contributions. To determine if delayed termination improved cover crop biomass and N content, we evaluated winter rye + hairy vetch (Secale cereale L. + Vicia villosa Roth) and oat + field pea (Avena sativa L. + Pisum sativum L.) cover crop mixtures in 2015 and 2016, and medium red clover (Trifolium pratense L.) in 2016, in zone-tilled organic yellow crookneck squash (Cucurbita pepo var. torticollis Harz). In-row regions where cover crops were terminated in early spring during crop row preparation were compared to between-row regions where termination was delayed until legume maturation in late spring. Soil quality (soil inorganic N, permanganate oxidizable C (POXC), and potentially mineralizable N (PMN)) was also determined for in-row and between-row regions at four time points throughout the growing season. In 2015, winter rye + hairy vetch biomass N more than doubled between early and late termination times, with 120 and 258 kg N ha−1, respectively. Permanganate oxidizable C was not responsive to cover crop systems or tillage, and only slightly decreased over time in 2016. Soil inorganic N and PMN after cover crop termination in 2016 provided evidence of localized soil N cycling responses to cover crop termination in in-row and between-row regions. The extended growing period for cover crops between crop rows in the first several weeks of crop growth had no negative effect on crop yield, and appeared to enhance soil fertility.


1998 ◽  
Vol 13 (1) ◽  
pp. 2-11 ◽  
Author(s):  
Ellen B. Mallory ◽  
Joshua L. Posner ◽  
Jon O. Baldock

AbstractCover crop performance depends largely on management factors that must be customized to particular farm situations and, therefore, is suited for on-farm research, with farmers involved in both management and evaluation. Cover crop sequences that were successful in a research station study were tested over a variety of soils and management strategies in collaboration withfarmers. The two-year cover crop sequences consisted of a short-season crop followed by a cover crop in year one and corn in year two. The cover crops themselves were evaluated by their agronomic and economic performance and their acceptance by farmers. Four cover crop systems (companionseeded red clover, sequentially seeded hairy vetch, sequentially seeded oat, and fallow) were compared for ground cover, above-ground biomass and above-ground nitrogen yield, subsequent corn grain yield, and N fertilizer replacement value (N-FRV). Cover crops were essential for erosion control following vegetable crops and tillage, but were not necessary following small grains. Companion-seeded red clover produced the most ground cover, yielded up to 133 kg N/ha, and had a higher average N-FRV than sequentially seeded hairy vetch on sandy loam soils, but was not preferred by farmers who harvested small grain straw as well as grain. Sequentially seeded hairy vetch gave excellent cover when no-till seeded, produced more than 125 kg N/ha in half the siteyears, and had a higher average N-FRV than companion-seeded red clover on silt loam soils. First-year N-FRV for the legume cover crops averaged 67 kg N/ha over both soil types. The participating farmers indicated that their decisions to adopt cover crops would be based primarily on their need for ground cover, and secondarily on the profitability of using cover crops as an N source. However, when valued solely as an N source for the next year's crop (and not for any potential long-term benefits), cover crops were not an economical alternative to N fertilizer. We suggest focusing future cover crop research and extension efforts on outreach to farmers growing crops that do not provide sufficient ground cover, such as short-season vegetable crops, and optimizing the cover crop system to maximize its erosion control benefits and increase its profitability over N fertilizer.


1996 ◽  
Vol 76 (1) ◽  
pp. 85-91 ◽  
Author(s):  
C. J. Swanton ◽  
K. Chandler ◽  
K. J. Janovicek

The use of underseeded red clover (Trifolium pratense L.) as a cover crop in winter wheat has been declining because of poor clover establishment during dry growing seasons, the lack of selective herbicides for weed control in clover, and the difficulty in using burn-down herbicides to remove the clover before planting no-till corn. During 1990–1992, we conducted on-farm trials on silt loam no-till and sandy ridge-till fields in southern Ontario to evaluate the establishment and growth of alternative stubble-seeded cover crops following wheat and their effects on subsequent weed and volunteer wheat growth. In general, oats (Avena sativa L.), oilseed radish (Raphanus sativus L.), and barley (Hordeum vulgare L.) produced more biomass than the other stubble-seeded cover crops, hairy vetch (Vicia villosa Roth.), red clover, and buckwheat (Fagopyrum esculentum L.). In comparison, winter-hardy underseeded hairy vetch and red clover produced the most biomass and provided better weed control; however, any reduction in herbicide use is offset by the need to burn down these cover crops. An evaluation of cover-crop effects on post-wheat-harvest weed growth was not possible because of sparse and variable weed growth, which occurred even in the absence of a cover crop. However, volunteer wheat biomass was inversely correlated with cover-crop biomass. At the no-till site, cover-crop response to straw baling and the subsequent effects on weed and volunteer wheat growth and corn performance also were evaluated. Straw baling had minimal effects on cover-crop growth; however, volunteer wheat growth doubled. No-till corn was not adversely affected by the amounts of residue present where cover crops were established the previous year. Importantly, reducing the amount of wheat straw by baling increased early-season growth rates and corn grain yield by 0.91 Mg ha−1. We conclude that alternative stubble-seeded cover crops, such as oats, barley and oilseed radish, are suitable for no-till corn. At present, cover crops augment weed management but are not a substitute for herbicides, as burn-down herbicides are required to remove existing weeds or winter-hardy cover crops. Key words: Underseeded, stubble seeded, baling, volunteer wheat


HortScience ◽  
1997 ◽  
Vol 32 (6) ◽  
pp. 1040-1043 ◽  
Author(s):  
Bruce P. Bordelon ◽  
Stephen C. Weller

Use of in-row cover crops for weed management in first-year vineyards was investigated in two studies. In the first study, rye (Secale cereal L. 'Wheeler') was fall-planted, overwintered, then managed by three methods before vine planting. Rye was either herbicide-desiccated with glyphosate and left on the surface as a mulch, mowed, or incorporated into the soil (cultivated). Weed density and growth of grapevines (Vitis spp.) were evaluated. Herbicide desiccation was superior to the other methods for weed suppression, with weed densities 3 to 8 times lower than for mowed or cultivated plots. Vine growth was similar among treatments, but the trend was for more shoot growth with lower weed density. In a second study, four cover crops, rye, wheat (Triticum aestivum L. 'Cardinal'), oats (Avena sativa L. 'Ogle'), and hairy vetch (Vicia villosa Roth), were compared. Wheat and rye were fall- and spring-planted, and oats and vetch were spring-planted, then desiccated with herbicides (glyphosate or sethoxydim) after vine planting and compared to weed-free and weedy control plots for weed suppression and grapevine growth. Cover crops provided 27% to 95% reduction in weed biomass compared to weedy control plots. Total vine dry mass was highest in weed-free control plots, was reduced 54% to 77% in the cover crop plots, and was reduced 81% in the weedy control. Fall-planted wheat and rye and spring-planted rye plots produced the highest vine dry mass among cover crop treatments. Spring-planted rye provided the best combination of weed suppression and vine growth. Chemical names used: N-(phosphonomethyl) glycine (glyphosate isopropylamine salt); 2-[l-(ethoxyimino)butyl]5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one (sethoxydim).


Weed Science ◽  
2015 ◽  
Vol 63 (2) ◽  
pp. 477-490 ◽  
Author(s):  
John R. Teasdale ◽  
Steven B. Mirsky

Insufficient weed control is a major constraint to adoption of reduced-tillage practices for organic grain production. Tillage, cover crop management, and crop planting date are factors that influence emergence periodicity and growth potential of important weed species in these systems. We assessed two hairy vetch cover crop management practices, disk-kill and roll-kill, across a range of corn planting dates from early May to late June in three experiments in Beltsville, MD. Patterns of seed dormancy, emergence, and early weed growth were determined for overseeded populations of common ragweed, giant foxtail, and smooth pigweed, three important species in the Mid-Atlantic states that represent early to late emergence. Common ragweed emergence was lowest and dormancy was highest of the three species across all planting dates. Giant foxtail emergence was higher than the other species in roll-killed hairy vetch and included a significant number of seeds that germinated before rolling operations in late June. Smooth pigweed had the highest emergence and lowest dormancy in disk-killed hairy vetch in June. Individual giant foxtail plant weight was higher in roll-killed than disk-killed hairy vetch in 2 of 3 yr, whereas that of smooth pigweed plants was higher in disk-killed than roll-killed vetch in 2 of 3 yr. Giant foxtail was the dominant species in roll-killed hairy vetch (averaged 79% of total weed biomass at corn silking), probably because of early germination and establishment before rolling operations. Smooth pigweed was the dominant species in disk-killed hairy vetch at June planting dates (averaged 77% of total weed biomass), probably because of high growth rates under warm conditions in tilled soil. This research demonstrated that cover crop management practices and the timing of planting operations can shift the dominant species of weed communities in organic farming systems and must be considered in long-term weed management planning.


1988 ◽  
Vol 34 (3) ◽  
pp. 201-206 ◽  
Author(s):  
C. S. Rothrock ◽  
W. L. Hargrove

The influence of winter legume cover crops and of tillage on soil populations of fungal genera containing plant pathogenic species in the subsequent summer sorghum crop were examined in field studies. Legume cover crops significantly increased populations of Pythium spp. throughout the sorghum crop compared with a rye cover crop or no cover crop. This stimulation of the populations of Pythium spp. was not solely due to colonization of cover-crop residue, as populations were significantly greater at the time the legume cover crop was desiccated. Removal of aboveground residue generally decreased populations of Pythium spp. in soil. Incorporation of residue by tillage increased populations of Pythium spp. at some sampling dates. Legumes differed in the magnitude of stimulation, with hairy vetch stimulating Pythium spp. more than crimson clover. Cover crop treatments did not consistently influence soil populations of Fusarium spp., Rhizoctonia solani, Rhizoctonia-like binucleate fungi, or Macrophomina phaseolina. Macrophomina phaseolina populations were significantly greater under no tillage.


Sign in / Sign up

Export Citation Format

Share Document