Model prediction of soil drainage classes based on digital elevation model parameters and soil attributes from coarse resolution soil maps

2008 ◽  
Vol 88 (5) ◽  
pp. 787-799 ◽  
Author(s):  
Z. Zhao ◽  
T L Chow ◽  
Q. Yang ◽  
H W Rees ◽  
G. Benoy ◽  
...  

High-resolution soil drainage maps are important for crop production planning, forest management, and environmental assessment. Existing soil classification maps tend to only have information about the dominant soil drainage conditions and they are inadequate for precision forestry and agriculture planning purposes. The objective of this research was to develop an artificial neural network (ANN) model for producing soil drainage classification maps at high resolution. Soil profile data extracted from coarse resolution soil maps (1:1 000 000 scale) and topographic and hydrological variables derived from digital elevation model (DEM) data (1:35 000 scale) were considered as candidates for inputs. A high-resolution soil drainage map (1:10 000) of the Black Brook Watershed (BBW) in northwestern New Brunswick (NB), Canada, was used to train and validate the ANN model. Results indicated that the best ANN model included average soil drainage classes, average soil sand content, vertical slope position (VSP), sediment delivery ratio (SDR) and slope steepness as inputs. It was found that 52% of model-predicted drainage classes were exactly the same as field assessment observations and 94% of model-predicted drainage classes were within ±1 class. In comparison, only 12% of maps indicated drainage classes were the same as field assessment observations based on coarse resolution soil maps and only 55% of points were within ±1 class of field assessed drainage classes. Results indicated that the model could be used to produce high-resolution soil drainage maps at relatively low cost. Key words: Soil drainage, artificial neural network model, ANN model, high-resolution soil maps, DEM, hydrology model

2010 ◽  
Vol 90 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Z. Zhao ◽  
Q. Yang ◽  
G. Benoy ◽  
T L Chow ◽  
Z. Xing ◽  
...  

Soil organic carbon (SOC) content is an important soil quality indicator that plays an important role in regulating physical, chemical and biological properties of soil. Field assessment of SOC is time consuming and expensive. It is difficult to obtain high-resolution SOC distribution maps that are needed for landscape analysis of large areas. An artificial neural network (ANN) model was developed to predict SOC based on parameters derived from digital elevation model (DEM) together with soil properties extracted from widely available coarse resolution soil maps (1:1 000 000 scale). Field estimated SOC content data extracted from high-resolution soil maps (1:10 000 scale) in Black Brook Watershed in northwestern New Brunswick, Canada, were used to calibrate and validate the model. We found that vertical slope position (VSP) was the most important variable that determines distributions of SOC across the landscape. Other variables such as slope steepness, and potential solar radiation (PSR) also had significant influence on SOC distributions. The prediction of the selected two-input-node SOC model (VSP and coarse resolution soil map recorded SOC as inputs) had a correlation coefficient of 0.92 with measured values, and model predicted SOC values had 47.9% of the total points within ±0.5% of the measured values and 70.6% within ±1% of the measured values. The prediction od the selected four-input-node model (VSP, slope steepness, PSR and coarse resolution SOC values as inputs) had a correlation coefficient of 0.98 with measured values and model predicted SOC values had 75% of the total points within ±0.5% of the measured values and 87% within ±1% of the measured values. The prediction of the five-input-nodes model with soil drainage as additional input had a correlation coefficient of 0.99 with measured values, and model predicted SOC values had 87% of the total points within ±0.5% of the measured values and 98% of the total points within ±1% of the measured values. The calibrated SOC prediction model was used to produce a high-resolution SOC map for the Black Brook Watershed and the resulting SOC distribution map is considered to be realistic. Results indicated that DEM-derived hydrological parameters together with widely available coarse resolution soil map data could be used to produce high-resolution SOC maps with the ANN method.Key words: Soil organic carbon, artificial neural network model, high-resolution soil maps, digital elevation model, vertical slope position


2021 ◽  
pp. 1-16
Author(s):  
Zhengyong Zhao ◽  
Qi Yang ◽  
Xiaogang Ding ◽  
Zisheng Xing

The depth-specific zinc (Zn) and copper (Cu) maps with high resolution (i.e., ≤10 m) are important for soil and forest management and conservation. The objective of this study was to assess the effects of easily accessible model inputs, i.e., existing coarse-resolution parent material, pH, and soil texture maps with 1:1 800 000–2 800 000 scale and nine digital elevation model (DEM)-generated terrain attributes with 10 m resolution, on modelling Zn and Cu distributions of forest soil over a large area (e.g., thousands of km2). A total of 511 artificial neural network (ANN) models for each depth (20 cm increments to 100 cm) were built and evaluated by a 10-fold cross-validation with 385 soil profiles from the Yunfu forest, South China, about 4915 km2 areas. The results indicated that the optimal models for five depths engaged five to seven DEM-generated attributes together with three coarse-resolution soil attributes as inputs, respectively, and accuracies for estimating Zn and Cu varied with R2 of 0.76–0.85 and relative overall accuracy ±10% of 74%–86%. The produced maps showed that DEM-generated sediment delivery ratio, topographic position index (TPI), and aspect were the most important attributes for predicting Cu, but flow length, TPI, and slope were for Zn, which heavily affected Zn and Cu distributions in detail. Boundaries of three coarse-resolution maps were still visible in the generated maps indicated that the maps affected the distributions of Zn and Cu in large scales. Thus, the modelling method, i.e., developing ANN models with k-fold cross-validation, can be used to map high-resolution Zn and Cu over a large area.


2019 ◽  
Vol 23 (6) ◽  
pp. 2561-2580 ◽  
Author(s):  
Zhenjiao Jiang ◽  
Dirk Mallants ◽  
Luk Peeters ◽  
Lei Gao ◽  
Camilla Soerensen ◽  
...  

Abstract. Paleovalleys are buried ancient river valleys that often form productive aquifers, especially in the semiarid and arid areas of Australia. Delineating their extent and hydrostratigraphy is however a challenging task in groundwater system characterization. This study developed a methodology based on the deep learning super-resolution convolutional neural network (SRCNN) approach, to convert electrical conductivity (EC) estimates from an airborne electromagnetic (AEM) survey in South Australia to a high-resolution binary paleovalley map. The SRCNN was trained and tested with a synthetic training dataset, where valleys were generated from readily available digital elevation model (DEM) data from the AEM survey area. Electrical conductivities typical of valley sediments were generated by Archie's law, and subsequently blurred by down-sampling and bicubic interpolation to represent noise from the AEM survey, inversion and interpolation. After a model training step, the SRCNN successfully removed such noise, and reclassified the low-resolution, converted unimodal but skewed EC values into a high-resolution paleovalley index following a bimodal distribution. The latter allows us to distinguish valley from non-valley pixels. Furthermore, a realistic spatial connectivity structure of the paleovalley was predicted when compared with borehole lithology logs and a valley bottom flatness indicator. Overall the methodology permitted us to better constrain the three-dimensional paleovalley geometry from AEM images that are becoming more widely available for groundwater prospecting.


2020 ◽  
Vol 22 (2) ◽  
pp. 47-51
Author(s):  
Saeed Behzadi ◽  
Amin Jalilzadeh

Elevation is a basic information of the earth, and different elevation models are provided to better understanding the earth and its different functions. However, it is not always possible to conduct a comprehensive survey in big areas and calculate all surface points. The best way is survey some points, then the elevation estimation is done using these points in each part of study area. The purpose of this paper is to use interpolation methods to estimate elevation. In such cases, different methods are used to interpolate and estimate points with an uncertain height. In this paper, the three usual methods are chosen and introduced then their performance are compared. These methods including: Inverse Distance Weighting (IDW), the Krige method or Kriging, and Artificial Neural Network (ANN). The results show that Artificial Intelligence with RMS = 5.9m is better in compare to Kriging with RMS = 7.2 and IDW with RMS = 9. The obtained result presents that in despite of its convenience, ANN provides DEMs with minimum errors.


2019 ◽  
Author(s):  
Zhenjiao Jiang ◽  
Dirk Mallants ◽  
Luk Peeters ◽  
Lei Gao ◽  
Gregoire Mariethoz

Abstract. Palaeovalleys are buried ancient river valleys that often form productive aquifers, especially in the semi-arid and arid areas of Australia. Delineating their extent and hydrostratigraphy is however a challenging task in groundwater system characterization. This study developed a methodology based on the deep learning super-resolution convolutional neural network (SRCNN) approach, to convert electrical conductivity (EC) estimates from an airborne electromagnetic (AEM) survey in South Australia to a high-resolution binary palaeovalley map. The SRCNN was trained and tested with a synthetic training dataset, where valleys were generated from readily available digital elevation model (DEM) data from the AEM survey area. Electrical conductivities typical of valley sediments were generated by Archie’s Law, and subsequently blurred by down-sampling and bicubic interpolation to represent noise from the AEM survey, inversion and interpolation. After a model training step, the SRCNN successfully removed such noise, and reclassified the low-resolution, unimodal but skewed EC values into a high-resolution palaeovalley index following a bimodal distribution. The latter allows distinguishing valley from non-valley pixels. Furthermore, a realistic spatial connectivity structure of the palaeovalley was predicted when compared with borehole lithology logs and valley bottom flatness indicator. Overall the methodology permitted to better constrain the three-dimensional palaeovalley geometry from AEM images that are becoming more widely available for groundwater prospecting.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1448
Author(s):  
Nam-Gyu Lim ◽  
Jae-Yeol Kim ◽  
Seongjun Lee

Battery applications, such as electric vehicles, electric propulsion ships, and energy storage systems, are developing rapidly, and battery management issues are gaining attention. In this application field, a battery system with a high capacity and high power in which numerous battery cells are connected in series and parallel is used. Therefore, research on a battery management system (BMS) to which various algorithms are applied for efficient use and safe operation of batteries is being conducted. In general, maintenance/replacement of multi-series/multiple parallel battery systems is only possible when there is no load current, or the entire system is shut down. However, if the circulating current generated by the voltage difference between the newly added battery and the existing battery pack is less than the allowable current of the system, the new battery can be connected while the system is running, which is called hot swapping. The circulating current generated during the hot-swap operation is determined by the battery’s state of charge (SOC), the parallel configuration of the battery system, temperature, aging, operating point, and differences in the load current. Therefore, since there is a limit to formulating a circulating current that changes in size according to these various conditions, this paper presents a circulating current estimation method, using an artificial neural network (ANN). The ANN model for estimating the hot-swap circulating current is designed for a 1S4P lithium battery pack system, consisting of one series and four parallel cells. The circulating current of the ANN model proposed in this paper is experimentally verified to be able to estimate the actual value within a 6% error range.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Sign in / Sign up

Export Citation Format

Share Document