Influence of 10 years of conservation tillage on some biological properties of a fine sandy loam in the potato phase of two crop rotations in Atlantic Canada

2009 ◽  
Vol 89 (4) ◽  
pp. 391-402 ◽  
Author(s):  
M R Carter ◽  
R D Peters ◽  
C Noronha ◽  
J Kimpinski

Conservation practices in potato (Solanum tuberosum L.) cropping systems can reduce excess tillage, provide crop residue cover, and maintain crop productivity; however, little is known about their long-term influence on soil biota and biological properties. Conservation tillage was evaluated in two potato rotations: a 2-yr barley-potato rotation and 3-yr clover-based (barley-red clover-potato) rotation initiated in 1994 on a fine sandy loam (Orthic Podzol) in Prince Edward Island, eastern Canada. Soil samples were obtained in 2003 from the 0- to 10-cm soil depth of the potato phase of both rotations to evaluate the influence of conservation, compared with conventional tillage, on changes in soil fertility, soil structural properties, soil C and N fractions, soil-borne pathogens, nematode communities, and micro-arthropod (Collembola and Acari) communities. The 3-yr conservation tillage practice improved soil structural stability, increased soil extractable P and K, increased soil organic C and total N and their particulate fractions, compared with the other treatments. Comparisons with earlier studies indicated that soil organic C had reached an equilibrium level at the 0- to 10-cm soil depth. Reduction of potato disease caused by Rhizoctonia solani was evident in the 3-yr rotation, compared with the 2-yr rotation, but was not influenced by tillage practice. Plant parasitic nematodes were not greatly influenced by rotation and tillage treatments; however, densities of the beneficial bacterial-feeding nematodes were increased under the 3-yr conservation tillage treatment. The abundance of micro-arthropods was increased by conservation tillage, while their diversity was mainly influenced by the rotation cycle rather than tillage practice. Overall, the 3-yr conservation tillage treatment provided a more beneficial soil biological condition than the other treatments, especially when compared with the 2-yr conventional tillage practice. Key words: Conservation systems, potato rotation, fine sandy loam, soil fertility, soil organic C and N fractions, soil structure, soil-borne pathogens, nematode, Collembola; Acari

2012 ◽  
Vol 58 (No. 12) ◽  
pp. 540-544 ◽  
Author(s):  
O. Mikanová ◽  
T. Šimon ◽  
M. Javůrek ◽  
M. Vach

 Soil quality and fertility are associated with its productivity, and this in turn is connected to the soil biological activity. To study these effects, well designed long-term field experiments that provide comprehensive data sets are the most applicable. Four treatments (tillage methods) were set up: (1) conventional tillage (CT); (2) no tillage (NT); (3) minimum tillage + straw (MTS), and (4) no tillage + mulch (NTM). Our objective was to assess the relationships between soil microbial characteristics and winter wheat yields under these different techniques of conservation tillage within a field experiment, originally established in 1995. The differences in average grain yields over time period 2002–2009 between the variants were not statistically significant. Organic carbon in the topsoil was higher in plots with conservation tillage (NT, MTS, and NTM), than in the conventional tillage plots. There was a statistically significant correlation (P ≤ 0.01) between the grain yields and organic C content in topsoil.  


Soil Research ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 362 ◽  
Author(s):  
Xirui Zhang ◽  
Hongwen Li ◽  
Jin He ◽  
Qingjie Wang ◽  
Mohammad H. Golabi

Conservation tillage is becoming increasingly attractive to farmers because it involves lower production costs than does conventional tillage. The long-term effects of sub-soiling tillage (ST), no tillage (NT), and conventional tillage (CT) on soil properties and crop yields were investigated over an 8-year period (2000–07). The study was conducted in a 2-crop-a-year region (Daxing) and a 1-crop-a-year region (Changping) of the Beijing area in China. At 0–0.30 m soil depth, water stability of macro-aggregates (>0.25 mm) was much greater for ST (22.1%) and NT (12.0%) than for CT in Daxing, and the improvements in Changping were 18.9% and 9.5%, respectively. ST and NT significantly (P < 0.05) improved aeration porosity by 14.5% and 10.6%, respectively, at Daxing and by 17.0% and 8.6% at Changping compared with CT treatment. Soil bulk density after 8 years was 0.8–1.5% lower in ST and NT treatments than in CT at both sites. Soil organic matter and available N and P followed the same order ST ≈ NT > CT at both sites. Consequently, crop yields in ST and NT plots were higher than in CT plots due to improved soil physical and chemical properties. Within the conservation tillage treatments, despite similar economic benefit, the effects on crop yields for ST were better than for NT. Mean (2000–07) crop yields for ST were 0.2% and 1.5% higher than for NT at Daxing and Changping, respectively. We therefore conclude that ST is the most suitable conservation tillage practice for annual 2-crop-a-year and 1-crop-a-year regions in the Beijing area.


1986 ◽  
Vol 66 (2) ◽  
pp. 197-207 ◽  
Author(s):  
M. R. CARTER ◽  
H. T. KUNELIUS

The soil physical, biological, and chemical condition was assessed under cultivated and direct-drilled systems for the annual establishment of Italian ryegrass (Lolium multiflorum Lam.) on Prince Edward Island. After 3 yr, the degree of tillage-induced soil compaction and change in soil biological and chemical properties were determined over the 0- to 24-cm soil depth, and compared with the soil structure under a permanent timothy (Phleum pratense L.) pasture. The study was conducted at two sites on a Charlottetown fine sandy loam, an Orthic Humo-Ferric Podzol (Haplorthod). Although the tillage comparisons produced significant changes in soil porosity, pore-size distribution, pore continuity, aggregation and soil strength, the range in physical properties was within the range considered optimum for soil structure. Soil strength was shown to exhibit marked temporal variation over the growing season. Changes in the distribution of soil microbial biomass C and N, percent organic C, pH and plant nutrients were evident between the establishment methods. Generally, soil chemical and biological conditions under direct-drilling were similar to those under permanent pasture. Comparison of the actual with the estimated maximum bulk density down the soil profile indicated that the propensity for soil consolidation or compaction was the same under the direct-drilling and cultivated systems and similar to that measured under permanent pasture. The annual establishment of Italian ryegrass, for 3 yr, by direct-drilling did not adversely affect soil structure or increase soil compaction. Key words: Direct-drilling, Italian ryegrass, soil structure, soil biological properties, tillage


2001 ◽  
Vol 81 (1) ◽  
pp. 17-27 ◽  
Author(s):  
C. A. Grant ◽  
K. R. Brown ◽  
G. J. Racz ◽  
L. D. Bailey

Effective fertilizer management is critical to maintain economic production and protect long-term environmental quality. Field studies were conducted over 4 yr at two locations in southwestern Manitoba to determine the effect of source, timing and placement of N on grain yield and N recovery of durum wheat (Triticum durum L. ‘Sceptre’) under reduced-tillage (RT) and conventional-tillage (CT) management. The effect of N management on durum grain yield and N recovery differed with soil type and tillage system. On the clay loam (CL) soil, lower yields with fall- as compared with spring-banded N were more frequent under RT than CT. Lower yields occurred more frequently with fall-applied as compared with spring-applied urea ammonium nitrate (UAN) than when urea or NH3 was the N source. On the drier fine sandy loam (FSL) soil, fall applications of N generally produced similar to higher grain yield than did spring applications. Differences among fertilizer sources and tillage systems were much less frequent with spring than fall applications of N. Where differences occurred, durum grain yields were higher with in-soil than surface applications of urea or UAN. In-soil applications of urea and UAN increased durum grain yield as compared with surface applications more frequently under RT than CT on the CL soil where yield potential was high, whereas increases on the FSL were as common under CT as under RT. On soils with a high yield potential, enhanced immobilisation and/or volatilisation of surface-applied N may reduce grain yield by reducing available N, particularly under RT. Selection of a suitable source-timing and placement combination to optimise crop yield may be more important under RT than CT. Key words: Conservation tillage, direct seeding, placement


Author(s):  
I. Zakaria ◽  
I. K. Dzomeku

Field experiment was carried out during the 2015 and 2016 cropping seasons at Integrated Water and Agricultural Development Limited (IWAD) in the Mamprugu Moaduri district of Northern region. The objectives of the study were to evaluate tillage system, soil amendment and weed management regime on the growth and yield of rice under lowland conditions. The experiment was laid out in split-split-plot design in three replications with tillage, soil amendment and weed management which constituted the main-plot, sub-plot and sub-sub-plot factors respectively. Tillage, soil amendment and weed management, each at three levels, were respectively made-up of zero tillage (ZT), minimum tillage (MT) and conventional tillage (CT); 2.5 tons/ha organic manure, 2 tons/ha biochar and 250 kg NPK/ha; and hand weeding at 3 and 6 weeks after planting (WAP), pre-emergence herbicide, and post-emergence herbicide. Post-emergence herbicide application supported earliest flower initiation (80-85 days) compared to manual weeding (82-92 days) and pre-emergence herbicides (83-90 days). The combination of zero tillage and pre-emergence herbicide weed management gave the highest number of tillers of 34.3 per hill and maximized grain yield (6661 kg/ha). Longest rice root length was 34 cm in zero tillage with compost amendments and pre-emergence herbicide treatments. Soil carbon stock below 40 cm soil depth was highest in zero tillage (0.89% C) compared to minimum tillage (0.65% C) and conventional tillage (0.55 % C). Results gave good indication of best land preparation, soil amendment and weed management practice that could promote sustainable cropping in sandy-loam textured lowland soils.   


2020 ◽  
pp. 1-5 ◽  
Author(s):  
Leanne Ejack ◽  
Joann K. Whalen ◽  
Chandra A. Madramootoo

Conservation tillage and crop residues should increase the soluble organic carbon and nitrate concentration in agricultural soil, which increases the denitrification potential. Basal denitrification (72 h laboratory incubation) was 2.1–2.7 times higher in a sandy loam soil under 15 yr of conservation tillage than conventional tillage and 1.8–2.0 times higher with high-residue (additional input 8.6–9.4 Mg dry matter·ha−1·yr−1) than low-residue inputs. Adding glucose and nitrate increased the soil denitrification potential 3- to 14-fold. Denitrification was limited by carbon availability, even in soil with 15 yr of conservation tillage and high-residue inputs.


1988 ◽  
Vol 68 (4) ◽  
pp. 657-668 ◽  
Author(s):  
M. R. CARTER

Soil penetration resistance was used to characterize tillage-induced changes in soil strength, as a functon of soil depth and time, under three reduced tillage systems and a deep tillage study in loam to fine sandy loam, Podzolic and Luvisolic soils. The penetration resistance measurements quantified the depth, degree, and persistence of soil loosening, and potential soil rooting depth in regard to tillage system. Mouldboard ploughing provided a greater degree of soil loosening than chisel ploughing. The potential soil rooting depth of 33 – 36 cm under mouldboard ploughing was decreased to 26 cm under both direct drilling and shallow tillage. Use of a slant-legged subsoiler (i.e., “paraplow”) prior to direct drilling prevented the reduction in soil rooting depth. The depth of soil loosening gradually declined by 30 and 60%, over a 5-mo period, under mouldboard ploughing and the "paraplow" direct drilling system, respectively. Residual tillage effects and soil compaction after deep loosening were quantified by the penetration resistance measurements. The use of penetration resistance to rapidly screen soil depth to critical levels of soil strength demonstrated that under sequential direct drilled systems soil loosening should occur on a regular basis to maintain optimum soil structure on fine sandy loam soils. Key words: Soil strength, penetration resistance, reduced tillage, Podzolic soil, Luvisolic soil


1993 ◽  
Vol 73 (3) ◽  
pp. 359-369 ◽  
Author(s):  
I. P. O'Halloran

This study was conducted to evaluate the impact of tillage and fertilization practices on soil organic carbon (organic-C) and the distribution of phosphorus between inorganic (Pi) and organic (Po) pools in a clay and sandy loam soil under a continuous corn (Zea mays L.) production system. Tillage treatments were established in the fall of 1981. The soils for this study were sampled (0- to 10-cm and 10- to 20-cm) in June 1988. Treatments consisted of three types of tillage: (i) conventional (CT): fall moldboard ploughing with two spring diskings; (ii) reduced (RT): with either fall chisel ploughing (1981–1986) or no fall tillage (1987) followed by one spring disking, and (iii) no-till (NT); and two types of fertilization (i) inorganic (I): 170 kg N ha−1. 80 kg P2O5, ha−1, 75 kg K2O ha−1, and (ii) organic fertilizer (O): dairy manure applied to give 170 kg N ha−1 plus 80 kg P2O5, ha−1 from inorganic P fertilizer. Even though a lime application was made in the fall of 1985, soil pH was significantly lower in the I fertilizer treatments. Reduction of tillage intensity resulted in a lower pH in the surface layer of the sandy loam soil. Tillage did not affect soil organic-C, or total soil Po (soil-Po) in either soil. Compared with the I fertilizer treatment, the O fertilizer treatment resulted in increased levels of soil organic-C and soil-Po only in the sandy loam soil. Labile levels of Po in the soil were not affected by treatments. Increased soil-Po levels possibly resulted from an increase in stable Po complexes. Moderately labile Po levels were not affected by treatments in the clay soil. In the sandy loam soil, O fertilization decreased moderately labile Po levels in the surface layer of the NT treatment, and increased this P fraction in the 10- to 20-cm soil layer of the RT and CT treatments. In the surface layer of both soils, labile levels of Pi were greater for the O fertilization treatment (approximately 40 and 47% higher for the clay and sandy loam, respectively), and were lower under CT. Increased labile Pi levels were associated with the O fertilizer treatment in the 10- to 20-cm depth increment in the sandy loam soil only, suggesting a greater downward movement of P with manure applications. Key words: Conventional tillage, zero-tilled, no-till, reduced tillage, manure, P fractionation


2009 ◽  
Vol 89 (2) ◽  
pp. 273-280 ◽  
Author(s):  
M. R. Carter ◽  
J. B. Sanderson ◽  
R. D. Peters

Conservation tillage in combination with mulches in potato (Solanum tuberosum L.) farming systems can maintain crop productivity and improve soil properties, in comparison with conventional tillage systems. However, information is needed on the long-term influence of such practices on potato crop parameters. A study was initiated in 1994 on a Charlottetown fine sandy loam (Orthic Podzol) in Prince Edward Island to assess the feasibility of using conservation tillage practices in combination with crop residue mulches (after the potato harvest) on potato production in two different potato rotations: a 2-yr barley-potato rotation and a clover-based 3-yr (barley-red clover -potato) rotation. In the conservation tillage system, the primary tillage event was moved from the autumn to spring and the degree and depth of tillage were reduced by replacing the conventional mouldboard plough (20 cm depth) with a shallow (15 cm depth) one-pass chisel plough just prior to potato planting. Potato yield and tuber quality, surface residue levels after potato planting, and tuber mineral content were evaluated from 2000 to 2007. Adoption of conservation tillage over the long-term did not adversely influence total or marketable potato yield, or tuber quality. The clover-based 3-yr rotation, compared with the 2-yr rotation, had little effect on total potato yield (42 vs. 44 Mg ha-1), but produced significantly higher marketable tuber yields (38 vs. 32 Mg ha-1), for four of the eight yrs of the study. The conservation tillage system, for both rotations, provided relatively high surface residue levels (>30%) after potato planting, compared with the bare soil surface in the conventional tillage system. Nutrient and trace element contents in tuber dry matter were similar between conservation and conventional tillage. Tuber uptake of nitrogen and other nutrients were slightly greater under the 3-yr, compared with the 2-yr rotation, and associated with tuber dry-matter yield differences. The results of the 14-yr study confirm the conclusions of previous short-term studies that a reduction in depth and intensity of tillage for potato culture is yield neutral, and a viable alternative to conventional tillage systems for potato production on sandy loams in eastern Canada. Key words: Conservation tillage, potato, crop rotation, fine sandy loam, crop yield, surface residue, eastern Canada


Sign in / Sign up

Export Citation Format

Share Document