scholarly journals Relationships between winter wheat yields and soil carbon under various tillage systems

2012 ◽  
Vol 58 (No. 12) ◽  
pp. 540-544 ◽  
Author(s):  
O. Mikanová ◽  
T. Šimon ◽  
M. Javůrek ◽  
M. Vach

 Soil quality and fertility are associated with its productivity, and this in turn is connected to the soil biological activity. To study these effects, well designed long-term field experiments that provide comprehensive data sets are the most applicable. Four treatments (tillage methods) were set up: (1) conventional tillage (CT); (2) no tillage (NT); (3) minimum tillage + straw (MTS), and (4) no tillage + mulch (NTM). Our objective was to assess the relationships between soil microbial characteristics and winter wheat yields under these different techniques of conservation tillage within a field experiment, originally established in 1995. The differences in average grain yields over time period 2002–2009 between the variants were not statistically significant. Organic carbon in the topsoil was higher in plots with conservation tillage (NT, MTS, and NTM), than in the conventional tillage plots. There was a statistically significant correlation (P ≤ 0.01) between the grain yields and organic C content in topsoil.  

1996 ◽  
Vol 76 (4) ◽  
pp. 891-897
Author(s):  
William H. Ahrens ◽  
Gregory J. Endres

Field experiments were conducted on loam soils in North Dakota to evaluate green and yellow foxtail control and grain yield in soybeans after fall application of trifluralin or ethalfluralin granules in untilled wheat stubble. Herbicides applied in October or November were left unincorporated or were "incorporated" with conservation-tillage methods including an undercutter, rotary hoe, or undercutter followed by a rotary hoe. A conventionally tilled standard treatment was included where trifluralin or ethalfluralin were incorporated by a field cultivator. Levels of postplant residue were at least 52% cover and 3810 kg ha−1 of aboveground dry matter where herbicide granules were left unincorporated or were incorporated by conservation-tillage methods. Trifluralin and ethalfluralin at 1.12 kg ha−1 applied as granules in mid-October in untilled stubble and incorporated with conservation-tillage methods controlled foxtail 88–92% and 87–94%, respectively, as determined the following June. Control in conservation-tillage treatments was as effective as the conventional tillage standard of trifluralin or ethalfluralin at 1.12 kg ha−1. Soybean yield correlated reasonably well with foxtail control and appeared to be maximized where good weed control was achieved either in conventional tillage or in conservation tillage with use of the undercutter. Key words: Conservation tillage, no-tillage, trifluralin, ethalfluralin, rotary hoe, undercutter


2011 ◽  
Vol 48 (No. 1) ◽  
pp. 20-26
Author(s):  
M. Birkás ◽  
T. Szalai ◽  
C. Gyuricza ◽  
M. Gecse ◽  
K. Bordás

This research was instigated by the fact that during the last decade annually repeated shallow disk tillage on the same field became frequent practice in Hungary. In order to study the changes of soil condition associated with disk tillage and to assess it is consequences, long-term tillage field experiments with different levels of nutrients were set up in 1991 (A) and in 1994 (B) on Chromic Luvisol at Gödöllö. The effects of disk tillage (D) and disk tillage combined with loosening (LD) on soil condition, on yield of maize and winter wheat, and on weed infestation were examined. The evaluation of soil condition measured by cone index and bulk density indicated that use of disking annually resulted in a dense soil layer below the disking depth (diskpan-compaction). It was found, that soil condition deteriorated by diskpan-compaction decreased the yield of maize significantly by 20 and 42% (w/w), and that of wheat by 13 and 15% (w/w) when compared to soils with no diskpan-compaction. Averaged over seven years, and three fertilizer levels, the cover % of the total, grass and perennial weeds on loosened soils were 73, 69 and 65% of soils contained diskpan-compaction.


2006 ◽  
Vol 20 (3) ◽  
pp. 622-626 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman ◽  
John C. Frihauf

Field experiments were conducted during 2003 and 2004 to compare the effectiveness of KIH-485 and S-metolachlor for PRE weed control in no-tillage and conventional-tillage corn. Longspine sandbur control increased as KIH-485 or S-metolachlor rates increased in conventional-tillage corn, but control did not exceed 75% when averaged over experiments. Both herbicides controlled at least 87% of green foxtail with the exception of no-tillage corn in 2004, when KIH-485 was more effective than S-metolachlor at lower rates. Palmer amaranth control ranged from 85 to 100% in 2003 and 80 to 100% in 2004, with the exception of only 57 to 76% control at the lowest two S-metolachlor rates in 2004. Puncturevine control exceeded 94% with all treatments in 2003. In 2004, KIH-485 controlled 86 to 96% of the puncturevine, whereas S-metolachlor controlled only 70 to 81%. Mixtures of atrazine with KIH-485 or S-metolachlor generally provided the most effective control of broadleaf weeds studied.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peng Jiang ◽  
Fuxian Xu ◽  
Lin Zhang ◽  
Mao Liu ◽  
Hong Xiong ◽  
...  

AbstractSimplified cultivation methods for rice production offer considerable social, economic, and environmental benefits. However, limited information is available on yield components of rice grown using simplified cultivation methods in a rice-ratoon rice cropping system. A field experiment using two hybrid and two inbred rice cultivars was conducted to compare four cultivation methods (conventional tillage and transplanting, CTTP; conventional tillage and direct seeding, CTDS; no-tillage and transplanting, NTTP; no-tillage and direct seeding, NTDS) in a rice-ratoon rice system from 2017 to 2020. Main season yields for CTDS and NTDS were higher than for CTTP by 6.1% and 2.8%, respectively; whereas ratoon season yields for CTDS and NTDS were equal to or higher than for CTTP. Annual grain yields for CTDS and NTDS were higher than for CTTP by 4.4% and 3.2%, respectively. The higher CTDS and NTDS yields were associated with higher panicle numbers per m2 and biomass production. Rice hybrids had higher yields than inbred cultivars by 15.8–19.3% for main season and by 15.6–19.4% for ratoon season, which was attributed to long growth duration, high grain weight and biomass production. Our results suggest that CTTP can be replaced by CTDS and NTDS to maintain high grain yields and save labor costs. Developing cultivars with high grain weight could be a feasible approach to achieve high rice yields in the rice-ratoon rice cropping system in southwest China.


2012 ◽  
Vol 58 (No. 1) ◽  
pp. 28-33 ◽  
Author(s):  
J.J. Wang ◽  
X.Y. Li ◽  
A.N. Zhu ◽  
X.K. Zhang ◽  
H.W. Zhang ◽  
...  

The impacts of tillage system (conventional tillage and no-tillage) and residue management (0, 50, and 100%) on soil properties and soil microbial community structure were determined in the Fengqiu State Key Agro-Ecological Experimental Station, North China. The microbial community structure was investigated by phospholipid fatty acid (PLFA) profiles. The results showed that tillage had significant effects on soil properties and soil microbial communities. In no-tillage (NT), microbial biomass carbon (MBC), total N, microbial biomass carbon/soil organic carbon (MBC/SOC), total microbes, and arbuscular mycorrhiza fungi increased, while actinomycetes, G<sup>+</sup>/G<sup>&ndash;</sup> bacteria ratio and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA) decreased, compared with those in conventional tillage (CT). Residue had a significant positive effect on C/N ratio and MUFA/STFA. Canonical correspondence analysis indicated that tillage explained 76.1%, and residue management explained 0.6% of the variations in soil microbial communities, respectively. Soil microbial communities were significantly correlated with MBC, total N, C/N ratio and MBC/SOC. Among the six treatments, NT with 100% residue application obviously improved soil microbiological properties, and could be a proper management practice in the Huang-Huai-Hai Plain of China. &nbsp;


2011 ◽  
Vol 35 (6) ◽  
pp. 1985-1994 ◽  
Author(s):  
Carina Rosa Álvarez ◽  
Alejandro Oscar Costantini ◽  
Alfredo Bono ◽  
Miguel Ángel Taboada ◽  
Flavio Hernán Gutiérrez Boem ◽  
...  

One of the expected benefits of no-tillage systems is a higher rate of soil C sequestration. However, higher C retention in soil is not always apparent when no-tillage is applied, due e.g., to substantial differences in soil type and initial C content. The main purpose of this study was to evaluate the potential of no-tillage management to increase the stock of total organic C in soils of the Pampas region in Argentina. Forty crop fields under no-tillage and conventional tillage systems and seven undisturbed soils were sampled. Total organic C, total N, their fractions and stratification ratios and the C storage capacity of the soils under different managements were assessed in samples to a depth of 30 cm, in three layers (0-5, 5-15 and 15-30 cm). The differences between the C pools of the undisturbed and cultivated soils were significant (p < 0.05) and most pronounced in the top (0-5 cm) soil layer, with more active C near the soil surface (undisturbed > no-tillage > conventional tillage). Based on the stratification ratio of the labile C pool (0-5/5-15 cm), the untilled were separated from conventionally tilled areas. Much of the variation in potentially mineralizable C was explained by this active C fraction (R² = 0.61) and by total organic C (R² = 0.67). No-till soils did not accumulate more organic C than conventionally tilled soils in the 0-30 cm layer, but there was substantial stratification of total and active C pools at no till sites. If the C stratification ratio is really an indicator of soil quality, then the C storage potential of no-tillage would be greater than in conventional tillage, at least in the surface layers. Particulate organic C and potentially mineralizable C may be useful to evaluate variations in topsoil organic matter.


1997 ◽  
Vol 11 (1) ◽  
pp. 30-34
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper

Seven field experiments were conducted in Oklahoma to compare efficacy and wheat response to currently registered cheat suppression or control herbicide treatments. Chlorsulfuron + metsulfuron premix (5:1 w/w) at 26 g ai/ha applied PRE controlled cheat 20 to 61%, increased wheat grain yields at two of seven locations, and decreased dockage due to cheat at five of seven locations. Chlorsulfuron + metsulfuron at 21 g/ha tank-mixed with metribuzin at 210 g/ha, applied early fall POST, controlled cheat 36 to 98% and increased wheat yield at four of seven locations. Metribuzin applied POST in the fall at 420 g/ha controlled cheat 56 to 98% and increased wheat yields at five of seven locations. Both POST treatments decreased dockage at all locations.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 103-110 ◽  
Author(s):  
C. S. Tan ◽  
C. F. Drury ◽  
M. Soultani ◽  
I. J. van Wesenbeeck ◽  
H. Y. F. Ng ◽  
...  

Conservation tillage has become an attractive form of agricultural management practices for corn and soybean production on heavy textured soil in southern Ontario because of the potential for improving soil quality. A controlled drainage system combined with conservation tillage practices has also been reported to improve water quality. In Southwestern Ontario, field scale on farm demonstration sites were established in a paired watershed (no-tillage vs. conventional tillage) on clay loam soil to study the effect of tillage system on soil structure and water quality. The sites included controlled drainage and free drainage systems to monitor their effect on nitrate loss in the tile drainage water. Soil structure, organic matter content and water storage in the soil profile were improved with no-tillage (NT) compared to conventional tillage (CT). No-tillage also increased earthworm populations. No-tillage was found to have higher tile drainage volume and nitrate loss which were attributed to an increase in soil macropores from earthworm activity. The controlled drainage system (CD) reduced nitrate loss in tile drainage water by 14% on CT site and 25.5% on NT site compared to the corresponding free drainage system (DR) from May, 1995 to April 30, 1997. No-tillage farming practices are definitely enhanced by using a controlled drainage system for preventing excessive nitrate leaching through tile drainage. Average soybean yields for CT site were about 12 to 14% greater than the NT site in 1995 and 1996. However, drainage systems had very little effect on soybean yields in 1995 and 1996 due to extremely dry growing seasons.


2019 ◽  
Vol 11 (17) ◽  
pp. 4522 ◽  
Author(s):  
Magdalena Ruiz ◽  
Encarna Zambrana ◽  
Rosario Fite ◽  
Aida Sole ◽  
Jose Luis Tenorio ◽  
...  

The increasing spread of conservation agriculture demands that the next generation of wheat varieties includes cultivars capable of maintaining satisfactory yields with lower inputs and under uncertain climate scenarios. On the basis of the genetic gains achieved during decades of selection oriented to yield improvements under conventional crop management, it is important that novel breeding targets are defined and addressed. Grain yield, yield-related traits, and phenological and morphological characteristics, as well as functional quality parameters have been analyzed for six varieties each of bread and durum wheat, under minimum tillage and no-tillage. During the three-year experiment, the climatic conditions at the field trial site were characterized by low rainfall, although different degrees of aridity—from moderate to severe—were experienced. Differences were found between these two soil management practices in regard to the varieties’ yield stability. A positive influence of no-tillage on traits related to grain and biomass yield was also evidenced, and some traits among the examined seemed involved in varietal adaptation to a particular non-conventional tillage system. The study also confirmed some breeding targets for improved performance of wheat genotypes in conservation agroecosystems. These traits were represented in the small set of traditional varieties analysed.


Sign in / Sign up

Export Citation Format

Share Document