Long-term conservation tillage in potato rotations in Atlantic Canada: Potato productivity, tuber quality and nutrient content

2009 ◽  
Vol 89 (2) ◽  
pp. 273-280 ◽  
Author(s):  
M. R. Carter ◽  
J. B. Sanderson ◽  
R. D. Peters

Conservation tillage in combination with mulches in potato (Solanum tuberosum L.) farming systems can maintain crop productivity and improve soil properties, in comparison with conventional tillage systems. However, information is needed on the long-term influence of such practices on potato crop parameters. A study was initiated in 1994 on a Charlottetown fine sandy loam (Orthic Podzol) in Prince Edward Island to assess the feasibility of using conservation tillage practices in combination with crop residue mulches (after the potato harvest) on potato production in two different potato rotations: a 2-yr barley-potato rotation and a clover-based 3-yr (barley-red clover -potato) rotation. In the conservation tillage system, the primary tillage event was moved from the autumn to spring and the degree and depth of tillage were reduced by replacing the conventional mouldboard plough (20 cm depth) with a shallow (15 cm depth) one-pass chisel plough just prior to potato planting. Potato yield and tuber quality, surface residue levels after potato planting, and tuber mineral content were evaluated from 2000 to 2007. Adoption of conservation tillage over the long-term did not adversely influence total or marketable potato yield, or tuber quality. The clover-based 3-yr rotation, compared with the 2-yr rotation, had little effect on total potato yield (42 vs. 44 Mg ha-1), but produced significantly higher marketable tuber yields (38 vs. 32 Mg ha-1), for four of the eight yrs of the study. The conservation tillage system, for both rotations, provided relatively high surface residue levels (>30%) after potato planting, compared with the bare soil surface in the conventional tillage system. Nutrient and trace element contents in tuber dry matter were similar between conservation and conventional tillage. Tuber uptake of nitrogen and other nutrients were slightly greater under the 3-yr, compared with the 2-yr rotation, and associated with tuber dry-matter yield differences. The results of the 14-yr study confirm the conclusions of previous short-term studies that a reduction in depth and intensity of tillage for potato culture is yield neutral, and a viable alternative to conventional tillage systems for potato production on sandy loams in eastern Canada. Key words: Conservation tillage, potato, crop rotation, fine sandy loam, crop yield, surface residue, eastern Canada

2014 ◽  
Vol 38 (4) ◽  
pp. 1281-1292 ◽  
Author(s):  
Luis Alberto Lozano ◽  
Carlos Germán Soracco ◽  
Vicente S. Buda ◽  
Guillermo O. Sarli ◽  
Roberto Raúl Filgueira

The area under the no-tillage system (NT) has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean) on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam) from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM) model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC) for these soils, but not the hydraulic conductivity (K) vs tension (h) curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.


2009 ◽  
Vol 44 (8) ◽  
pp. 949-953 ◽  
Author(s):  
Cécile Villenave ◽  
Bodovololona Rabary ◽  
Jean-Luc Chotte ◽  
Eric Blanchart ◽  
Djibril Djigal

The objective of this work was to assess the effects of conventional tillage and of different direct seeding mulch-based cropping systems (DMC) on soil nematofauna characteristics. The long-term field experiment was carried out in the highlands of Madagascar on an andic Dystrustept soil. Soil samples were taken once a year during three successive years (14 to 16 years after installation of the treatments) from a 0-5-cm soil layer of a conventional tillage system and of three kinds of DMC: direct seeding on mulch from rotation soybean-maize residues; direct seeding of maize-maize rotation on living mulch of silverleaf (Desmodium uncinatum); direct seeding of bean (Phaseolus vulgaris)-soybean rotation on living mulch of kikuyu grass (Pennisetum clandestinum). The samples were compared with samples from natural fallows. The soil nematofauna, characterized by the abundance of different trophic groups and indices (MI, maturity index; EI and SI, enrichment and structure indices), allowed the discrimination of the different cropping systems. The different DMC treatments had a more complex soil food web than the tillage treatment: SI and MI were significantly greater in DMC systems. Moreover, DMC with dead mulch had a lower density of free-living nematodes than DMC with living mulch, which suggested a lower microbial activity.


2009 ◽  
Vol 89 (4) ◽  
pp. 391-402 ◽  
Author(s):  
M R Carter ◽  
R D Peters ◽  
C Noronha ◽  
J Kimpinski

Conservation practices in potato (Solanum tuberosum L.) cropping systems can reduce excess tillage, provide crop residue cover, and maintain crop productivity; however, little is known about their long-term influence on soil biota and biological properties. Conservation tillage was evaluated in two potato rotations: a 2-yr barley-potato rotation and 3-yr clover-based (barley-red clover-potato) rotation initiated in 1994 on a fine sandy loam (Orthic Podzol) in Prince Edward Island, eastern Canada. Soil samples were obtained in 2003 from the 0- to 10-cm soil depth of the potato phase of both rotations to evaluate the influence of conservation, compared with conventional tillage, on changes in soil fertility, soil structural properties, soil C and N fractions, soil-borne pathogens, nematode communities, and micro-arthropod (Collembola and Acari) communities. The 3-yr conservation tillage practice improved soil structural stability, increased soil extractable P and K, increased soil organic C and total N and their particulate fractions, compared with the other treatments. Comparisons with earlier studies indicated that soil organic C had reached an equilibrium level at the 0- to 10-cm soil depth. Reduction of potato disease caused by Rhizoctonia solani was evident in the 3-yr rotation, compared with the 2-yr rotation, but was not influenced by tillage practice. Plant parasitic nematodes were not greatly influenced by rotation and tillage treatments; however, densities of the beneficial bacterial-feeding nematodes were increased under the 3-yr conservation tillage treatment. The abundance of micro-arthropods was increased by conservation tillage, while their diversity was mainly influenced by the rotation cycle rather than tillage practice. Overall, the 3-yr conservation tillage treatment provided a more beneficial soil biological condition than the other treatments, especially when compared with the 2-yr conventional tillage practice. Key words: Conservation systems, potato rotation, fine sandy loam, soil fertility, soil organic C and N fractions, soil structure, soil-borne pathogens, nematode, Collembola; Acari


2001 ◽  
Vol 81 (1) ◽  
pp. 17-27 ◽  
Author(s):  
C. A. Grant ◽  
K. R. Brown ◽  
G. J. Racz ◽  
L. D. Bailey

Effective fertilizer management is critical to maintain economic production and protect long-term environmental quality. Field studies were conducted over 4 yr at two locations in southwestern Manitoba to determine the effect of source, timing and placement of N on grain yield and N recovery of durum wheat (Triticum durum L. ‘Sceptre’) under reduced-tillage (RT) and conventional-tillage (CT) management. The effect of N management on durum grain yield and N recovery differed with soil type and tillage system. On the clay loam (CL) soil, lower yields with fall- as compared with spring-banded N were more frequent under RT than CT. Lower yields occurred more frequently with fall-applied as compared with spring-applied urea ammonium nitrate (UAN) than when urea or NH3 was the N source. On the drier fine sandy loam (FSL) soil, fall applications of N generally produced similar to higher grain yield than did spring applications. Differences among fertilizer sources and tillage systems were much less frequent with spring than fall applications of N. Where differences occurred, durum grain yields were higher with in-soil than surface applications of urea or UAN. In-soil applications of urea and UAN increased durum grain yield as compared with surface applications more frequently under RT than CT on the CL soil where yield potential was high, whereas increases on the FSL were as common under CT as under RT. On soils with a high yield potential, enhanced immobilisation and/or volatilisation of surface-applied N may reduce grain yield by reducing available N, particularly under RT. Selection of a suitable source-timing and placement combination to optimise crop yield may be more important under RT than CT. Key words: Conservation tillage, direct seeding, placement


2008 ◽  
Vol 23 (2) ◽  
pp. 107-114
Author(s):  
Milena Simic ◽  
Nebojsa Momirovic ◽  
Zeljko Dolijanovic ◽  
Zeljko Radosevic

The effects of different herbicide combinations: control (1), alachlor+linuron (2), and alachlor+linuron+imazethapyr (3) were investigated in double-cropped soybean grown in two row spacing variants, 38 cm and 76 cm, under conventional tillage (CT) or no-tillage (NT). In trials conducted on a sandy loam soil at Zemun Polje, high weediness had a negative effect of on the yield of double-cropped soybean, especially at the higher row spacing tested and with no-tillage. Regression and correlation data revealed a dependence of weediness in double-cropped soybean on tillage system and herbicide combination, and dependence of soybean yield on tillage system.


2018 ◽  
Vol 71 (3) ◽  
Author(s):  
Dorota Gawęda ◽  
Andrzej Woźniak ◽  
Elżbieta Harasim

In-crop weed infestation is affected by both habitat conditions and agronomic practices, including the forecrop and tillage treatments used. This study evaluated the effect of the forecrop and the tillage system on species composition, number and dry weight of weeds in a winter wheat ‘Astoria’. A field study was carried out over the period 2014–2017 at the Uhrusk Experimental Farm (SE Poland), on a mixed rendzina soil with a grain-size distribution of sandy loam. Wheat was grown in a four-course crop rotation: soybean – winter wheat – rapeseed – winter wheat. The experimental factors were as follows: a forecrop of winter wheat (soybean and winter rapeseed) and a tillage system (ploughing and no-tillage). <em>Avena fatua</em> was the most frequently occurring weed in the wheat crop sown after soybean, whereas after winter rapeseed it was <em>Viola arvensis</em>. <em>Viola arvensis</em> was the dominant weed under both tillage systems. In all experimental treatments, the species <em>Viola arvensis</em> and <em>Cirsium arvense</em> were characterized by the highest constancy (Constancy Class V and IV), and also <em>Veronica arvensis</em> after the previous winter rapeseed crop. In the wheat crop sown after winter rapeseed, the number of weeds was found to be higher by 62.1% and the weed dry weight higher by 27.3% compared to these parameters after the previous soybean crop. A richer floristic composition of weeds was also observed in the stand after winter rapeseed. Under conventional tillage conditions, compared to no-tillage, the number of weeds was found to be lower by 39.7% and their dry weight by 50.0%. An increase in the numbers of the dominant weed species was also noted in the untilled plots.


2020 ◽  
pp. 1-5 ◽  
Author(s):  
Leanne Ejack ◽  
Joann K. Whalen ◽  
Chandra A. Madramootoo

Conservation tillage and crop residues should increase the soluble organic carbon and nitrate concentration in agricultural soil, which increases the denitrification potential. Basal denitrification (72 h laboratory incubation) was 2.1–2.7 times higher in a sandy loam soil under 15 yr of conservation tillage than conventional tillage and 1.8–2.0 times higher with high-residue (additional input 8.6–9.4 Mg dry matter·ha−1·yr−1) than low-residue inputs. Adding glucose and nitrate increased the soil denitrification potential 3- to 14-fold. Denitrification was limited by carbon availability, even in soil with 15 yr of conservation tillage and high-residue inputs.


2021 ◽  
pp. 1-12
Author(s):  
Ying Shen ◽  
Tingting Zhang ◽  
Jichao Cui ◽  
Siyu Chen ◽  
Huifang Han ◽  
...  

Summary The North China Plain (NCP) is an important agricultural area, where conventional tillage (CT) is used year-round. However, long-term CT has damaged the soil structure, threatening agricultural sustainability. Since 2002, we have conducted a long-term tillage experiment in the NCP to explore the effects of different types of tillage on soil and crop yield. As part of long-term conservation tillage, we conducted a 2-year study in 2016/2017 to determine the impact of no tillage (NT), subsoiling (SS), rotary tillage (RT) and CT on soil aggregate distribution, aggregate-associated organic carbon (AOC), aggregate-associated microbial biomass carbon (AMBC), and maize yield. Compared to CT, NT increased the content of macro-aggregates (+4.8%), aggregate-AOC (+8.3%), and aggregate-AMBC (+18.3%), but decreased maize yield (−11.5%). SS increased the contents of macro-aggregates (+5%), aggregate-AOC (+14.7%), and aggregate-AMBC (+16%); although the yield increase was not significant (+0.22%), it had the highest economic benefit among the four tillage measures. RT had no significant advantage when considering the above soil variables; moreover, it reduced maize yield by 16.1% compared with CT. Overall, SS is a suitable tillage measure to improve soil macro-aggregate content, carbon content, yield, and economic benefit in the NCP area.


Sign in / Sign up

Export Citation Format

Share Document