Potential utilization of native prairie grasses from western Canada as ethanol feedstock

2004 ◽  
Vol 84 (4) ◽  
pp. 1067-1075 ◽  
Author(s):  
Paul G. Jefferson ◽  
W. Paul McCaughey ◽  
Ken May ◽  
Jay Woosaree ◽  
Linden McFarlane

The utilization of native grass species for potential biomass feedstocks of the emerging ethanol industry requires more information about their cellulose and hemicellulose concentration. Ten native species were grown at seven sites across the prairie region of western Canada for two to four growing seasons. Northern wheatgrass, Elymus lanceolatus, produced high concentrations of cellulose (363 g kg-1) but low concentrations of hemicellulose (266 g kg-1). Green needlegrass, Nasella viridula, produced high concentrations of both constituents (351 and 307 g kg-1). Four warm-season grasses, big bluestem, Andropogon gerardii, little bluestem, Schizachyrium scoparium, prairie sandreed, Calamovilfa longifolia, and switchgrass, Panicum virgatum, had 346, 342, 340 and 338 g kg-1, respectively, concentrations of cellulose and also exhibited a positive response to temperature that resulted in increased hemicellulose concentration. Accumulated thermal time (degree day base 10°C) was correlated to hemicellulose concentrations in the warm-season grasses but not for cool-season grasses. Holocellulose (cellulose + hemicellulose) concentration differences varied among site-years but warm-season grasses were more stable in hollocellulose concentration than cool-season grasses. Key words: Biomass, native grasses, cellulose, hemicellulose, biofuel

2016 ◽  
Vol 9 (2) ◽  
pp. 87-95 ◽  
Author(s):  
Katie L. Wirt ◽  
Rodney G. Lym

When invasive weeds are removed with herbicides, revegetation of native species is often desirable. The extended soil activity of aminocyclopyrachlor is important for long-term weed control but could reduce recovery of native species as well. The effect of aminocyclopyrachlor applied alone or with chlorsulfuron on cool- and warm-season grass species commonly used for revegetation was evaluated. The cool-season grasses included green needlegrass, intermediate wheatgrass, and western wheatgrass, whereas the warm-season grasses were big bluestem, sideoats grama, and switchgrass. A separate experiment was conducted for each species. Aminocyclopyrachlor was applied at 91 to 329 g ha−1 alone or with chlorsulfuron from 42 to 133 g ha−1 approximately 30 d after emergence. Warm-season grasses generally were more tolerant of aminocyclopyrachlor than the cool-season grasses evaluated in this study. Switchgrass and big bluestem were the most tolerant of the warm-season species when aminocyclopyrachlor was applied at 168 g ha−1 and averaged 199 and 150% forage production, respectively, compared with the control. Green needlegrass was the most tolerant cool-season grass. Western wheatgrass was the least tolerant species evaluated because forage production only averaged 32% of the control the year after treatment and thus would not be suitable for seeding if aminocyclopyrachlor was applied. The effect of chlorsulfuron applied with aminocyclopyrachlor varied by grass species. For example, green needlegrass injury 8 wk after treatment (WAT) averaged 30 and 48% when aminocylopyrachlor was applied alone, respectively, but injury was reduced to less than 16% when aminocyclopyrachlor was applied with chlorsulfuron. However, injury on the less-tolerant intermediate wheatgrass ranged from 48 to 92% by 4 WAT when aminocyclopyrachlor was applied alone and from 60 to 86% when chlorsulfuron was included in the treatment.


2014 ◽  
Vol 94 (7) ◽  
pp. 1139-1148 ◽  
Author(s):  
B. Biligetu ◽  
P. G. Jefferson ◽  
R. Muri ◽  
M. P. Schellenberg

Biligetu, B., Jefferson, P. G., Muri, R. and Schellenberg, M. P. 2014. Late summer forage yield, nutritive value, compatibility of warm-and cool-season grasses seeded with legumes in western Canada. Can. J. Plant Sci. 94: 1139–1148. In late summer and fall, quality and quantity of forage are important for weight gain by grazing animals in western Canada. The objective of this study was to evaluate forage nutritive value, dry matter (DM) yield, and compatibility of crested wheatgrass [Agropyron cristatum (L.) Gaertn.], meadow bromegrass (Bromus riparius Rehm.), green needle grass [Nasella viridula (Trin.) Barkworth], northern wheatgrass [Elymus lanceolatus (Scribn. & J. G. Sm.) Gould], western wheatgrass [Pascopyrum smithii (Rydb.) Barkworth & D.R. Dewey], Russian wildrye [Psathyrostachys juncea (Fisch.) Nevski], big bluestem (Andropogon gerardii Vitman), or switchgrass (Panicum virgatum L.) in eight grass monocultures, and their binary mixtures with alfalfa (Medicago sativa L.), sainfoin (Onobrychis viciifolia Scop.), or cicer-milkvetch (Astragalus cicer L.) harvested once in August or September. A field study was conducted over a 7-yr period from 1998 to 2004 near Swift Current (lat. 50°25'N, long. 107°44'W, 824 m elev.), SK, Canada, using a randomized complete block design. Forage DM yield was similar between August and September harvests (P>0.05). Binary mixtures of alfalfa–grass produced highest (P<0.05) DM yield ranging from 2449 to 2758 kg ha−1. The monoculture of crested wheatgrass (2143 kg ha−1), sainfoin with crested wheatgrass (2061 kg ha−1), and cicer-milkvetch with green needle grass (1838 kg ha−1) or cicer-milkvetch with western wheatgrass (1861 kg ha−1) produced the second highest (P<0.05) DM yields in the ranking. The two warm-season grasses produced the lowest (P>0.05) DM yields over the 7-yr period. Monocultures of green needle grass or northern wheatgrass had the highest acid detergent fiber (ADF) and neutral detergent fiber (NDF), while warm-season grasses with legumes had the lowest. Alfalfa with western wheatgrass and alfalfa with Russian wildrye had the highest crude protein (CP) concentrations. Monocultures of meadow bromegrass, crested wheatgrass, green needle grass, or cicer-milkvetch with meadow bromegrass, and sainfoin with crested wheatgrass had the lowest CP concentrations. In vitro organic matter digestibility (IVOMD) was greater for mixtures than for the grass monocultures. Concentration of Ca and P was greater for warm-season grasses than cool-season grasses. Alfalfa with western wheatgrass was the best combination considering yield, quality, and compatibility for deferred grazing in late summer and fall in the semiarid prairies. Tested warm-season grasses are not recommended for seeding as binary mixtures with legumes for southwestern Saskatchewan.


2020 ◽  
Vol 15 (1) ◽  
pp. 20-28
Author(s):  
Alberto Mantino ◽  
Vittoria Giannini ◽  
Cristiano Tozzini ◽  
Enrico Bonari ◽  
Giorgio Ragaglini

In the Mediterranean rainfed systems, perennial warm-season grasses are profitable crops for the production of herbage as forage or feedstock for bioenergy purposes. During summer, when the production of cool-season crops is scarce, warm-season grasses can improve the productivity and stability of forage cropping systems. In Italy, switchgrass (Panicum virgatum L.) can be cultivated for herbage production or as energy crop. The objective of this work was evaluating if relay intercropping with cool-season legumes could be suited to convert a mature stand of switchgrass from energy to dual, energy and forage, production, together with improving the productivity and the quality of the harvestable biomass. All these things considered, a field experiment was carried out in Central Italy, on mature stands of two switchgrass varieties, Alamo and Blackwell, overseeded with two legumes: sulla (Hedysarum coronarium L.) and crimson clover (Trifolium incarnatum L.). The intercropping system was compared with fertilized and un-fertilized pure switchgrass stands. After two years of study, data showed that the intercropping increased the total above ground biomass (AGB) productivity. In the second year, the increase in total AGB production for switchgrass mixtures compared with the pure stands was greater for sulla, a biennial legume, than crimson clover.


HortScience ◽  
2018 ◽  
Vol 53 (6) ◽  
pp. 842-849
Author(s):  
S. Christopher Marble ◽  
Matthew T. Elmore ◽  
James T. Brosnan

Research was conducted to determine the tolerance of multiple native and ornamental grass species and one ornamental sedge species to over-the-top applications of the postemergence herbicide topramezone at three locations in the southeastern United States in 2016 and 2017. Fully rooted liners of selected grass species were outplanted into research plots in Apopka, FL; Dallas, TX; and Knoxville, TN in late spring, allowed time to establish (≈1–2 months) and then treated with two applications of topramezone at either 0.05 or 0.10 kg a.i./ha at 6–8 weeks intervals. Results showed that species including Andropogon virginicus (broomsedge), Schizachyrium scoparium ‘The Blues’ (little bluestem), Tripsacum dactyloides (eastern gamagrass), and Tripsacum floridanum (florida gamagrass) exhibited the greatest tolerance to topramezone with <10% injury to no injury being evident after each application of both herbicide rates tested. Chasmanthium latifolium (wild oats), Eragrostis elliottii ‘Wind Dancer’, Muhlenbergia capillaris (pink muhly), and Spartina bakeri (sandcord grass) were significantly injured (50% injury or greater) at both herbicide rates. Average injury observed on Panicum virgatum ‘Shenandoah’ (red switchgrass) (ranging from 39% to 100% injury) and Sorghastrum nutans (indian grass) (ranging from 0% to 40% injury) was higher in Florida than in Tennessee (injury ranging from 23% to 43% on red switchgrass and 0% to 10% on indian grass). Similarly, Pennisetum alopecuroides (dwarf fountain grass) showed higher tolerance in Texas (ranging from 0% to 34% injury) compared with those observed in Tennessee (ranging from 0% to 53% injury). Topramezone injury to Carex appalachica (appalachian sedge) was ≤18% following two applications at both rates tested. Although no injury was observed in appalachian sedge following a single application up to 0.1 kg a.i. in Florida, plants succumbed to heat stress and accurate ratings could not be taken following the second application. Because of variability observed, tolerance of red switchgrass, indian grass, dwarf fountain grass, and appalachian sedge to applications of topramezone deserves further investigation. There is potential for future use of topramezone for control of certain grass and broadleaf weeds growing in and around certain ornamental grass species. However, as there was significant variability in tolerance based on species and differences in cultivars, testing a small group of plants before large-scale application would be recommended.


2011 ◽  
Vol 21 (4) ◽  
pp. 443-450 ◽  
Author(s):  
Mack Thetford ◽  
Gary W. Knox ◽  
Edwin R. Duke

Full sun trial gardens were established at two sites in northern Florida. Six U.S. native and three non-native warm season grass species were evaluated in a split-plot design. Only eastern gamagrass (Tripsacum dactyloides), elliott's lovegrass (Eragrostis elliottii), gulf hairawn muhly (Muhlenbergia capillaris), little bluestem (Schizachyrium scoparium), and ‘Central Park' maiden grass (Miscanthus sinensis) showed a significant response to supplemental irrigation or fertilization. Supplemental irrigation did not influence foliage height for any of the grasses, whereas supplemental fertilization influenced foliage height only for chinese fountain grass (Pennisetum alopecuroides). The response differences between locations were attributed in part to soil types. This study observed minimal or no response of shoot growth to supplemental irrigation or fertilization for the grass species tested, thereby affirming the broad adaptability and minimal need for inputs for these ornamental landscape plants.


2008 ◽  
Vol 18 (3) ◽  
pp. 329-333 ◽  
Author(s):  
Suleiman S. Bughrara ◽  
David R. Smitley ◽  
David Cappaert

Six grass species representing vegetative and seeded types of native, warm-season and cool-season grasses, and pennsylvania sedge (Carex pensylvanica) were evaluated in the greenhouse for resistance to root-feeding grubs of european chafer (Rhizotrogus majalis). Potted bermudagrass (Cynodon dactylon), buffalograss (Buchlöe dactyloides), zoysiagrass (Zoysia japonica), indiangrass (Sorghastrum nutans), little bluestem (Schizachyrium scoparium), tall fescue (Festuca arundinacea), and pennsylvania sedge grown in a greenhouse were infested at the root zone with 84 grubs per 0.1 m2 or 182 grubs per 0.1 m2. The effects on plant growth, root loss, survival, and weight gain of grubs were determined. Survival rates were similar for low and high grub densities. With comparable densities of grubs, root loss tended to be proportionately less in zoysiagrass and bermudagrass than in other species. European chafer grubs caused greater root loss at higher densities. Grub weight gain and percentage recovery decreased with increasing grub density, suggesting a food limitation even though root systems were not completely devoured. Bermudagrass root weight showed greater tolerance to european chafer grubs; another mechanism is likely involved for zoysiagrass. Variation in susceptibility of plant species to european chafer suggests that differences in the ability of the plants to withstand grub feeding damage may be amenable to improvement by plant selection and breeding.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 450e-451
Author(s):  
Virginia A. Gaynor ◽  
Mary Hockenberry Meyer

There is great interest in prairie gardens and prairie restorations in the central United States. Small prairie gardens are often established with plugs, but most restorationists and landscape contractors use seed for large plantings. If initial establishment is poor, restorations are often interseeded the second or third season. However, to evaluate early establishment and determine if interseeding is necessary, contractors must be able to identify native grasses in the seedling and juvenile stages. In this study we investigated vegetative characteristics of native prairie grass seedlings. Seven species of native prairie grass were grown in the greenhouse: Andropogon gerardii (big bluestem), Sorghastrum nutans (Indian grass), Panicum virgatum (switch grass), Schizachyrium scoparium (little bluestem), Bouteloua curtipendula (sideoats grama), Elymus canadensis (Canada wildrye), and Bromus kalmii (Kalmís brome). Every 2 to 3 weeks after germination, seedlings were photographed, pressed, and mounted. Additional photographs were taken through the dissecting scope at key stages of development. Ligules and auricles were found to be useful in distinguishing species, and our close-up photographs highlight these structures. Hairiness and color were variable within a species and could not be used reliably in identification. A seedling identification key will be presented for the species studied.


Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 375-379 ◽  
Author(s):  
Thomas J. Peters ◽  
Russell S. Moomaw ◽  
Alex R. Martin

The control of three summer annual grass weeds with herbicides during establishment of forage grasses was studied near Concord and Mead, NE, in 1984, 1985, and 1986. Three cool-season forage grasses, intermediate wheatgrass, tall fescue, and smooth bromegrass, and two warm-season grasses, big bluestem and switchgrass, were included. The control of three major summer annual grasses, green foxtail, barnyardgrass, and large crabgrass, was excellent with fenoxaprop at 0.22 kg ai/ha. Slight to moderate injury to cool-season forage grasses and severe injury to warm-season grasses were evident. Sethoxydim at 0.22 kg ai/ha and haloxyfop at 0.11 kg ai/ha controlled green foxtail and large crabgrass, but not barnyardgrass. Sulfometuron-treated big bluestem and switchgrass plots had the best forage stand frequencies and yields and, at the rate used, sulfometuron satisfactorily controlled green foxtail but only marginally controlled barnyardgrass and large crabgrass.


1992 ◽  
Vol 70 (8) ◽  
pp. 1596-1602 ◽  
Author(s):  
S. P. Bentivenga ◽  
B. A. D. Hetrick

Previous research on North American tallgrass prairie grasses has shown that warm-season grasses rely heavily on vesicular–arbuscular mycorrhizal symbiosis, while cool-season grasses are less dependent on the symbiosis (i.e., receive less benefit). This led to the hypothesis that cool-season grasses are less dependent on the symbiosis, because the growth of these plants occurs when mycorrhizal fungi are inactive. Field studies were performed to assess the effect of phenology of cool- and warm-season grasses on mycorrhizal fungal activity and fungal species composition. Mycorrhizal fungal activity in field samples was assessed using the vital stain nitro blue tetrazolium in addition to traditional staining techniques. Mycorrhizal activity was greater in cool-season grasses than in warm-season grasses early (April and May) and late (December) in the growing season, while mycorrhizal activity in roots of the warm-season grasses was greater (compared with cool-season grasses) in midseason (July and August). Active mycorrhizal colonization was relatively high in both groups of grasses late in the growing season, suggesting that mycorrhizal fungi may proliferate internally or may be parasitic at this time. Total Glomales sporulation was generally greater in the rhizosphere of cool-season grasses in June and in the rhizosphere of the warm-season grasses in October. A growth chamber experiment was conducted to examine the effect of temperature on mycorrhizal dependence of cool- and warm-season grasses. For both groups of grasses, mycorrhizal dependence was greatest at the temperature that favored growth of the host. The results suggest that mycorrhizal fungi are active in roots when cool-season grasses are growing and that cool-season grasses may receive benefit from the symbiosis under relatively cool temperature regimes. Key words: cool-season grasses, tallgrass prairie, vesicular–arbuscular mycorrhizae, warm-season grasses.


1982 ◽  
Vol 62 (3) ◽  
pp. 657-665 ◽  
Author(s):  
R. W. TAYLOR ◽  
D. W. ALLINSON

Animal production in New England has been limited by inadequate forage during mid- to late summer when cool-season grasses are in summer dormancy. Big bluestem (Andropogon gerardi Vitman), indiangrass [Sorghastrum nutans (L.) Nash] and switchgrass (Panicum virgatum L.) are warm-season grasses that may be a perennial source of summer forage. Since production of these warm-season grasses would be limited to the less fertile soils of the region, a greenhouse study was conducted to examine the growth and quality of these species in five acid, infertile soils as well as fertilizer-amended soils. The soils were fertilized with limestone (L), limestone plus nitrogen (LN), limestone, nitrogen plus phosphorus (LNP), and limestone, nitrogen, phosphorus plus potassium (LNPK). Limestone was applied to adjust soils to a pH of 6.5. Fertilizer was applied at rates of 45, 117 and 111 kg/ha of N, P and K, respectively. First harvest yields were greatest for switchgrass and big bluestem, but indiangrass produced significantly greater yields than either of the other grasses in the second harvest. In both harvests, the yields of all grasses were greatest under the LNP and LNPK fertility regimes. Nitrogen, without P, did not significantly increase yields above the control treatment in the first harvest. Yield responses to P fertilization varied with soils. Although P appeared to be the limiting factor insofar as growth was concerned, the yield response from P fertilization would probably be limited without N fertilization. Indiangrass was significantly higher in crude protein and K concentration and significantly lower in Ca concentration than big bluestem and switchgrass. Phosphorus concentrations were below the recommended levels for ruminant nutrition.


Sign in / Sign up

Export Citation Format

Share Document