Indirect selection for lower deoxynivalenol (DON) content in grain in a winter wheat population

2007 ◽  
Vol 87 (4) ◽  
pp. 931-936 ◽  
Author(s):  
L. Tamburic-Ilincic ◽  
A. W. Schaafsma ◽  
D. E. Falk

Selection for Fusarium head blight (FHB) resistance and lower deoxynivalenol (DON) content is an important goal in many wheat-breeding programs worldwide. Preliminary screening for less severe FHB symptoms in the early segregating generations can be an important tool to assist breeders in determining which lines to advance to homozygosity. The objectives of this study were: (1) to test influence of plant height, heading date, presence of awns and number of spikelets per spike on FHB index and DON content and (2) to estimate the reliability of indirect selection for lower DON content based on FHB index. A Ruby × Frontana winter wheat population was spray inoculated with a spore suspension of Fusarium graminearum in 2001 and 2002. Plant height was significantly associated with DON content in both years; taller lines accumulated less DON than shorter ones. The moderately resistant lines, based on FHB index after in oculation, had a statistically lower DON accumulation compared with the highly susceptible ones (17.7 ppm vs. 20.6 ppm and 0.6 ppm vs. 2.0 ppm in 2001 and 2002) respectively. The results from this study suggest that selection for FHB resistance can be an indirect selection method for lowering DON accumulation in wheat grain. A breeder can identify and discard those early generation lines that are highly susceptible to FHB as they likely would have higher DON levels. Key words: Fusarium graminearum (Schwabe), morphology, resistance, Triticum aestivum L.

2021 ◽  
Author(s):  
Yunzhe Zhao ◽  
Xinying Zhao ◽  
Mengqi Ji ◽  
Wenqi Fang ◽  
Hong Guo ◽  
...  

Abstract Background: Fusarium head blight (FHB) is a disease affecting wheat spikes caused by Fusarium species, which leads to cases of severe yield reduction and seed contamination. Therefore, identifying resistance genes from various sources is always of importance to wheat breeders. In this study, a genome-wide association study (GWAS) focusing on FHB using a high-density genetic map constructed with 90K single nucleotide polymorphism (SNP) arrays in a panel of 205 elite winter wheat accessions, was conducted in 3 environments. Results: Sixty-six significant marker–trait associations (MTAs) were identified (P<0.001) on fifteen chromosomes explaining 5.4–11.2% of the phenotypic variation therein. Some important new genomic regions involving FHB resistance were found on chromosomes 2A, 3B, 5B, 6A, and 7B. On chromosome 7B, 6 MTAs at 92 genetic positions were found in 2 environments. Moreover, there were 11 MTAs consistently associated with diseased spikelet rate and diseased rachis rate as pleiotropic effect loci. Eight new candidate genes of FHB resistance were predicated in wheat. Of which, three genes: TraesCS5D01G006700, TraesCS6A02G013600, and TraesCS7B02G370700 on chromosome 5DS, 6AS, and 7BL, respectively, were important in defending against FHB by regulating chitinase activity, calcium ion binding, intramolecular transferase activity, and UDP-glycosyltransferase activity in wheat. In addition, a total of six excellent alleles associated with wheat scab resistance were discovered. Conclusion: These results provide important genes/loci for enhancing FHB resistance in wheat breeding populations by marker-assisted selection.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
François Fauteux ◽  
Yunli Wang ◽  
Hélène Rocheleau ◽  
Ziying Liu ◽  
Youlian Pan ◽  
...  

Abstract Background Fusarium head blight (FHB) is a major disease of cereal crops, caused by the fungal pathogen Fusarium graminearum and related species. Breeding wheat for FHB resistance contributes to increase yields and grain quality and to reduce the use of fungicides. The identification of genes and markers for FHB resistance in different wheat genotypes has nevertheless proven challenging. Results In this study, early infection by F. graminearum was analyzed in a doubled haploid population derived from the cross of the moderately resistant wheat genotypes Wuhan 1 and Nyubai. Three quantitative trait loci (QTL) were identified: 1AL was associated with lower deoxynivalenol content, and 4BS and 5A were associated with reduced F. graminearum infection at 2 days post inoculation. Early resistance alleles were inherited from Wuhan 1 for QTL 1AL and 4BS and inherited from Nyubai for the 5A QTL. Cis and trans expression QTL (eQTL) were identified using RNA-seq data from infected head samples. Hotspots for trans eQTL were identified in the vicinity of the 1AL and 4BS QTL peaks. Among differentially expressed genes with cis eQTL within the QTL support intervals, nine genes had higher expression associated with FHB early resistance, and four genes had higher expression associated with FHB early susceptibility. Conclusions Our analysis of genotype and gene expression data of wheat infected by F. graminearum identified three QTL associated with FHB early resistance, and linked genes with eQTL and differential expression patterns to those QTL. These findings may have applications in breeding wheat for early resistance to FHB.


2016 ◽  
Vol 106 (12) ◽  
pp. 1544-1552 ◽  
Author(s):  
Maria Buerstmayr ◽  
Hermann Buerstmayr

The semidwarfing alleles reduced height (Rht)-D1b and Rht-B1b are widely deployed in wheat breeding. Both alleles have similar effects on plant height but differ in their effect on Fusarium head blight (FHB) severity. A double-haploid population and a backcross population, segregating for Rht-B1a/Rht-B1b and Rht-D1a/Rht-D1b, were evaluated for FHB severity, plant height, and anther retention in field trials in three consecutive years. The semidwarfing alleles reduced plant height and increased the proportion of retained anthers. Reduced plant height and a high proportion of retained anthers were associated with increased FHB severity. The Rht-D1b allele had a significantly greater impact on anther retention and FHB severity than the Rht-B1b allele. Fusarium graminearum establishes infection sites predominantly inside the floral cavity and retained anthers potentially support colonization and initial hyphal growth, leading to a higher disease level in genotypes with a higher proportion of retained anthers. This is the first report demonstrating that differences in disease severity associated with Rht-D1b and Rht-B1b can be partly explained by their different effect on the extent of anther retention.


Genome ◽  
2012 ◽  
Vol 55 (12) ◽  
pp. 853-864 ◽  
Author(s):  
Yuefeng Ruan ◽  
André Comeau ◽  
François Langevin ◽  
Pierre Hucl ◽  
John M. Clarke ◽  
...  

Most tetraploid durum wheat (Triticum turgidum L var. durum) cultivars are susceptible to Fusarium head blight (FHB). This study reports novel quantitative trait loci (QTL) associated with FHB resistance. A backcross recombinant inbred line (BCRIL) population was developed from the cross BGRC3487/2*DT735, and 160 lines were evaluated for resistance to Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schwein. Petch) in field trials over 3 years (2008–2010) and to a F. graminearum 3-acetyl-deoxynivalenol (3-ADON) chemotype in greenhouse trials. The population was genotyped with 948 polymorphic loci using DArT and microsatellite markers. Eleven QTL were associated with FHB resistance under field conditions on chromosomes 2A, 3B, 5A, 5B, 7A, and 7B. Two of these, QFhb.usw-3B from BGRC3487 and QFhb.usw-7A2, were consistently detected over environments. The QFhb.usw-3B QTL was in a similar position to a resistance QTL in hexaploid wheat. The combination of the two QTL reduced field index by 53.5%–86.2%. Two QTL for resistance to the 3-ADON chemotype were detected on chromosomes 1B and 4B. Both BGRC3487 and DT735 could provide new sources of FHB resistance and the combination of QTL reported here could be valuable tools in breeding FHB-resistant durum wheat.


Plant Disease ◽  
2021 ◽  
Author(s):  
Rupesh Gaire ◽  
Clay Sneller ◽  
Gina Brown-Guedira ◽  
David A. Van Sanford ◽  
Mohsen Mohammadi ◽  
...  

Fusarium head blight (FHB) is a devastating disease of wheat and barley. In the US, a significant long-term investment in breeding FHB resistant cultivars began after the 1990s. However, to this date, no study has been performed to understand and monitor the rate of genetic progress in FHB resistance as a result of this investment. Using 20 years of data (1998 to 2018) from the Northern Uniform (NU) and Preliminarily Northern Uniform (PNU) winter wheat scab nurseries which consisted of 1068 genotypes originating from 9 different institutions, we studied the genetic trends in FHB resistance within the northern soft red winter wheat growing region using mixed model analyses. For the FHB resistance traits incidence, severity, Fusarium damaged kernels (FDK), and deoxynivalenol content, the rate of genetic gain in disease resistance was estimated to be 0.30 ± 0.1, 0.60 ± 0.09, 0.37 ± 0.11 points per year, and 0.11 ± 0.05 ppm per year, respectively. Among the five FHB resistance QTL assayed for test entries from 2012 to 2018, the frequencies of favorable alleles from Fhb 2DL Wuhan1 W14, Fhb Ernie 3Bc, and Fhb 5A Ning7840 was close to zero across the years. The frequency of the favorable at Fhb1 and Fhb 5A Ernie ranged from 0.08 to 0.33 and 0.06 to 0.20 respectively across years, and there was no trend in changes in allele frequencies over years. Overall, this study showed that substantial genetic progress has been made towards improving resistance to FHB. It is apparent that the current investment in public wheat breeding for FHB resistance is achieving results and will continue to play a vital role in reducing FHB levels in growers’ fields.


2020 ◽  
Vol 21 (12) ◽  
pp. 4497 ◽  
Author(s):  
Raman Dhariwal ◽  
Maria A. Henriquez ◽  
Colin Hiebert ◽  
Curt A. McCartney ◽  
Harpinder S. Randhawa

Fusarium head blight (FHB) is one of the most devastating wheat disease due to its direct detrimental effects on grain-yield, quality and marketability. Resistant cultivars offer the most effective approach to manage FHB; however, the lack of different resistance resources is still a major bottleneck for wheat breeding programs. To identify and dissect FHB resistance, a doubled haploid wheat population produced from the Canadian spring wheat cvs AAC Innova and AAC Tenacious was phenotyped for FHB response variables incidence and severity, visual rating index (VRI), deoxynivalenol (DON) content, and agronomic traits days to anthesis (DTA) and plant height (PHT), followed by single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker genotyping. A high-density map was constructed consisting of 10,328 markers, mapped on all 21 chromosomes with a map density of 0.35 cM/marker. Together, two major quantitative trait loci for FHB resistance were identified on chromosome 2D from AAC Tenacious; one of these loci on 2DS also colocated with loci for DTA and PHT. Another major locus for PHT, which cosegregates with locus for low DON, was also identified along with many minor and epistatic loci. QTL identified from AAC Tenacious may be useful to pyramid FHB resistance.


2020 ◽  
Vol 100 (2) ◽  
pp. 156-174
Author(s):  
S. Berraies ◽  
R.E. Knox ◽  
R.M. DePauw ◽  
F.R. Clarke ◽  
A.R. Martin ◽  
...  

Several quantitative trait loci (QTL) have been identified for Fusarium head blight (FHB) resistance in the cultivar Sumai 3. Wheat breeders need to know which Sumai 3 loci are present in derived lines used as parents for effective marker-assisted selection for genetic improvement. This study was conducted to identify the loci in Sumai 3 derived parents that contribute FHB resistance in breeding populations. Three doubled haploid (DH) populations utilizing Sumai 3 derived parents, ND3085, ND744, and Alsen, were evaluated during 2007 and 2008 in FHB nurseries near Carman, MB, Ottawa, ON and Charlottetown, PE. The percentage of incidence, severity, Fusarium-damaged kernels (FDK), and deoxynivalenol (DON) accumulation were measured, and FHB index calculated. DNA markers at six FHB resistance loci detected in Sumai 3 were evaluated on the populations. For each trait, a t test was applied to means of observations pooled by parental type of each marker to determine which loci contributed to resistance. The alleles at 3BS and 5AS most frequently contributed to Type I and Type II FHB resistance, as well as to reduced FDK and DON in all three populations. Markers revealed resistance on 3BS and 5AS in Alsen, ND3085, and ND744, on 3BSc, 4D, and 6BS in ND744, on 4D in ND3085, and on 6BS in Alsen. In some environments, the susceptible parent Infinity contributed minor QTL on 2D, 3BSc, and 6BS. Likewise, Helios contributed minor QTL on 5AS and 6BS.


2000 ◽  
Vol 90 (10) ◽  
pp. 1079-1088 ◽  
Author(s):  
Zhengqiang Ma ◽  
Brian J. Steffenson ◽  
Louis K. Prom ◽  
Nora L. V. Lapitan

Fusarium head blight (FHB) is a devastating disease that causes significant reductions in yield and quality in wheat and barley. Barley grains infected with deoxynivalenol (DON), a vomitoxin produced by Fusarium graminearum, are rejected for malting and brewing. Among six-rowed barley cultivars tested thus far, only cv. Chevron exhibited resistance. This study was conducted to map genes and to identify DNA markers for marker-assisted breeding for FHB resistance in cv. Chevron with restriction fragment length polymorphism (RFLP) markers. A doubled haploid (DH) population was created from a cross between cv. Chevron and susceptible cv. Stander. Seven field experiments were conducted in four different locations in 2 years. A RFLP map containing 211 loci and covering over 1,000 centimorgans (cM) of the genome was used to map quantitative trait loci (QTL) associated with relatively low FHB severity and DON concentration. Morphological traits differing between the parents were also measured: heading date, plant height, spike angle, number of nodes per cm of rachis in the spike, and kernel plumpness. Many of the QTL for FHB and DON coincided with QTLs for these morphological traits. The “fix-QTL” algorithm in Mapmaker QTL was used to remove the part of the variance for FHB resistance that may be explained by heading date or plant height. Results from this study suggest that QTLs with major effects for FHB resistance probably do not exist in cv. Chevron. Three QTL intervals, Xcmwg706-Xbcd441 on chromosome 1H, Xbcd307b-Xcdo684b on chromosome 2H, and Xcdo959b-Xabg472 on chromosome 4H, that are not associated with late heading or height may be useful for marker-assisted selection.


2008 ◽  
Vol 88 (6) ◽  
pp. 1087-1089 ◽  
Author(s):  
Stephen N Wegulo ◽  
Floyd E Dowell

Fusarium head blight (scab) of wheat, caused by Fusarium graminearum, often results in shriveled and/or discolored kernels, which are referred to as Fusarium-damaged kernels (FDK). FDK is a major grain grading factor and therefore is routinely determined for purposes of quality assurance. Measurement of FDK is usually done visually. Visual sorting can be laborious and is subject to inconsistencies resulting from variability in intra-rater repeatability and/or inter-rater reliability. The ability of a single-kernel near-infrared (SKNIR) system to detect FDK was evaluated by comparing FDK sorted by the system to FDK sorted visually. Visual sorting was strongly correlated with sorting by the SKNIR system (0.89 ≤ r ≤ 0.91); however, the SKNIR system had a wider range of FDK detection and was more consistent. Compared with the SKNIR system, visual raters overestimated FDK in samples with a low percentage of Fusarium-damaged grain and underestimated FDK in samples with a high percentage of Fusarium-damaged grain. Key words: Wheat, Fusarium head blight, Fusarium-damaged kernels, single-kernel near-infrared


Sign in / Sign up

Export Citation Format

Share Document