Soybean nitrogen contribution to corn and residual nitrate under conventional tillage and no-till

1997 ◽  
Vol 77 (4) ◽  
pp. 543-551 ◽  
Author(s):  
F. S. Rembon ◽  
A. F. MacKenzie

Soybean (Glycine max L. Merill) can produce high-N residues that may benefit subsequent corn (Zea mays L.) production, but the degree of benefit is often unpredictable and may be related to tillage methods. This study investigated the effects of conventional-tillage (CT) and no-tillage (NT) on fertilizer replacement values for corn in a corn-soybean rotation. Field experiments were conducted for two growing seasons on two soils, a Ste. Rosalie clay (Humic Gleysol), and an Ormstown silty clay (Humic Gleysol). Continuous corn, corn following soybean, soybean following corn, continuous soybean, and three levels of fertilizer N (0, 90, 180 and 0, 20, and 40 kg N ha−1 for corn and soybean, respectively) were compared. Tillage did not effect yield or N uptake consistently. Corn grain yields and N uptake were greater following soybean than following corn. Soybean provided N fertilizer credits ranging from 40 to 150 kg N ha−1, which was greater than the residual NO3 in the soil prior to planting. Credits were greater in the year with higher corn yields and lower previous winter precipitation resulting in greater NO3 carryover. Tillage effects on N credits from soybean differed between the sites. Consequently, N contributions of soybean to corn could not be related to tillage method or soil type. Key words:Zea mays L., Glycine max L. Merill, rotations, grain yield, N uptake, tillage, fertilizer N

Weed Science ◽  
1982 ◽  
Vol 30 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Tim Sharp ◽  
Robert Frans ◽  
Ronald Talbert

Soybeans [Glycine max(L.) Merr.] are often the replacement crop when cotton (Gossypium hirsutumL.) is abandoned because of stand failure in the southern United States. Injury from cotton herbicides may be reduced if the soybean planting is delayed more than 4 weeks after cotton planting or if the original herbicide-treated area is fully tilled and a new seedbed formed. Planting delay intervals were compared with five cotton preemergence herbicides on Calloway silt loam at one location. Seedbed-preparation methods were included in a similar experiment at two locations on Sharkey silty clay. Herbicides compared were fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea], norflurazon [4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3(2H)-pyridazinone], cyanazine {2-[[4-chloro-6-(ethylamino)-s-triazin-2-yl] amino]-2-methylpropionitrile}, perfluidone {1,1,1-trifluoro-N-[2-methyl-4-phenylsulfonyl)phenyl] methanesulfonamide}, fluridone {1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone}, and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea]. Seedbeds compared were no-till and conventional (fully tilled). Soybean planting delays after cotton planting were 20, 29, and 56 days (first year), and 15 and 29 or 15 and 30 days (second year). We found in the 2-yr studies that fluridone severely damaged soybeans both years. Fluometuron and diuron also caused damage the second year when we experienced wet, cool conditions in the spring. Most injury occurred on the clay, with yield reductions occurring even after the 30-day delay. Norflurazon was most injurious at this location. The no-tillage planting method resulted in the least herbicide injury on the silt loam and the conventional tillage method was better on the clay. Detailed studies with fluometuron under incubation conditions showed that degradation was inhibited most by low temperatures and high soil moisture.


1992 ◽  
Vol 6 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Stacey A. Bruff ◽  
David R. Shaw

Field experiments were established in 1989 and 1990 on silty clay and sandy loam soils to evaluate selective herbicides in combination with non-selective weed control measures in conventional and stale seedbed soybean production. Metribuzin PRE followed by chlorimuron POST controlled sicklepod better with paraquat than with glyphosate. A POST application of imazaquin increased sicklepod and pitted morningglory control by imazaquin PRE alone in a stale seedbed or tillage program. Pitted morningglory control with imazaquin PRE was lower with tillage than with glyphosate or paraquat combinations in a stale seedbed program. All metribuzin plus chlorimuron PRE treatments, whether conventional tillage or stale seedbed, controlled pitted morningglory more than 75%. Hemp sesbania control was above 80% with all metribuzin followed by chlorimuron or metribuzin plus chlorimuron PRE combinations, and less than 70% with all treatments containing imazaquin. Selective herbicides increased yield in stale seedbed when glyphosate or paraquat was added. Imazaquin PRE, imazaquin PRE followed by imazaquin POST, and metribuzin PRE followed by chlorimuron POST tank mixed with glyphosate or paraquat in a stale seedbed program increased yield compared with the same treatments used with tillage.


Agric ◽  
2020 ◽  
Vol 31 (2) ◽  
pp. 136-145
Author(s):  
Reginawanti Hindersah ◽  
Rara Rahmantika Risanti ◽  
Ibnu Haikal ◽  
Yuliati Mahfud ◽  
Nenny Nurlaeny ◽  
...  

Biofertilizer which contain rhizobacteria Azotobacter increase soil fertility and improve plant growth through nitrogen fixation and phytohormone production. The objective of this study was to compare the responses of soybean (Glycine max (L.) Merill) plants in dry land after the application of several Azotobacter inoculation methods. Field experiments were carried out with a randomized block design consisting of five treatments with five replicates each. The treatments were seed inoculation, soil treatment before planting, soil treatment after planting and plant dressing. Plant inoculation with Azotobacter treated with half of recommended dosage urea  while the control plant received recommended dose urea. The experimental results showed that all application methods did not affect soybean production, number of nodules, Azotobacter populations in the rhizosphere and N total soil; but Azotobacter inoculation through leaves increased N uptake and weight of 100 soybean seeds.


1983 ◽  
Vol 63 (2) ◽  
pp. 199-210 ◽  
Author(s):  
C. W. BULLEN ◽  
R. J. SOPER ◽  
L. D. BAILEY

Growth chamber and field experiments were conducted on Southern Manitoba soils, low in available soil phosphorus, to investigate the effects of various placement methods and levels of phosphorus fertilizer on soybean (Glycine max (L.) Merrill ’Maple Presto’). It was found that soybean responded well to applied phosphorus on low-P soil in growth chamber studies. In the first growth chamber experiment, P was applied in solution to 100%, 50%, 25%, 12.5% and 1% of the total soil volume. Dry matter yields, total phosphorus uptake and utilization of fertilizer P increased at each level of applied P as the size of the phosphated band was decreased. The results were partly attributed to greater chemical availability of P in the smaller zones of P fertilizer reaction. In a second growth chamber experiment, soybeans responded differently to phosphorus banded in six different locations. Placement of the fertilizer 2.5 cm directly below the seed was more effective in increasing dry matter yield, total phosphorus uptake and fertilizer P utilization than placement 2.5 cm and 5 cm away at the same depth or placement 5 cm below the seed, whether the band was directly below, 2.5 cm away or 5 cm away. Soybean yield responses in the field were greatest with P banded 2.5 cm directly below the seed on low-P soils. Placement of P 2.5 cm below the seed resulted in grain yields that were 64% and 50% higher (at the two sites) than those obtained in control plots. Sidebanding P, 2.5 cm below and 2.5 cm away from the seed at the same level of application, improved grain yields of control plots by 40% and 39%. Seed placement and broadcast applications of P were not as effective in increasing grain yields. Broadcasting P in fall or in spring at rates of up to 52.38 kg P/ha did not result in significantly higher grain yields than those obtained in control plots. Placement of P in contact with the seed appeared to reduce seedling emergence, resulting in depressed yields when 52.38 kg P/ha were applied. Key words: Glycine max L. Merrill, ’Maple Presto’


1993 ◽  
Vol 7 (3) ◽  
pp. 645-649 ◽  
Author(s):  
David L. Jordan ◽  
David H. Johnson ◽  
William G. Johnson ◽  
J. Andrew Kendig ◽  
Robert E. Frans ◽  
...  

Field experiments were conducted to determine carryover potential to grain sorghum and soybean of DPX-PE350 applied POST at 0.05, 0.1, and 0.2 kg ai ha−1to cotton the previous year. DPX-PE350 did not injure soybean or affect yield adversely. Grain sorghum was injured and maturity delayed on a Sharkey silty clay but not on a Calloway silt loam. Grain sorghum yield was reduced on both soils 16 and 22%, respectively, by residues from the 0.1 and 0.2 kg ha−1rates of DPX-PE350. In an incubation study, dissipation of DPX-PE350 was greater at 35 C than at 5 C., and did not differ between the two soils.


2020 ◽  
Vol 48 (2) ◽  
pp. 799-813
Author(s):  
Ioanna KAKABOUKI ◽  
Antigolena FOLINA ◽  
Charikleia ZISI ◽  
Stella KARYDOGIANNI

Soybean (Glycine max L.) constitutes a crop that is currently of interest both for its nutritional properties in humans and animals and for its contribution to soil nitrogen. It belongs to legumes, that means that it can take N2 and channel it to the soil, to be assimilable from plants. In addition, its high oil and protein content makes it important because of its nutritional properties. Moreover, soybean is a crop that has a major impact on nitrogen indicators. In this study, set up two same experiments in 2018-2019, in Western Greece. There were identified the effects of different fertilizer application (Control, N80, N100, N120), and different tillage (conventional tillage (CT), no tillage (NT)), on soil (organic matter, root density, no nodules/soil) and in agronomic (LAI, height, N% in upper parts, Yield, N% in seeds, N uptake in upper parts, N uptake in seed, N total uptake) characteristics. As well as in nitrogen indicators (nitrogen use efficiency, nitrogen harvest index, nitrogen agronomic efficiency, effects of absorption, effects of uptake). Soil properties were affected mainly by the tillage. However agronomic characteristics presented more differences between the different fertilizer application and finally the indicators were affected on both the parameters.


2002 ◽  
Vol 82 (1) ◽  
pp. 53-65 ◽  
Author(s):  
W. J. Bullied ◽  
M. H. Entz ◽  
S. R. Smith, Jr. ◽  
K. C. Bamford

Single-year hay alfalfas (Medicago sativa L.), berseem (Trifolium alexandrinum L.) and red clovers (Trifolium pratense L.), chickling vetch (Lathyrus sativus L.) and lentil (Lens culinaris Medik.) were evaluated for rotational yield and N benefits to the following first-year wheat (Triticum aestivum L.) and second-year barley (Hordeum vulgare L.) crops. Field experiments were initiated in 1997 and 1998 on a Riverdale silty clay soil at Winnipeg, Manitoba. Yield and N content of the following wheat crop were increased following legumes compared to wheat following a canola control. Wheat yield and N content averaged 2955 kg ha–1 and 76.1 kg ha–1, respectively, following the chickling vetch and lentil, 2456 kg ha–1 and 56.4 kg ha–1 following single-year hay legumes, compared with 1706 kg ha–1 and 37.9 kg ha–1 following canola. Non-dormant alfalfas (dormancy rating of eight or greater) contributed to larger grain yields than the dormant alfalfas only in the first year of each experiment. The chickling vetch and lentil provided similar or higher subsequent crop yields and N content for 2 yr compared to a canola control or fallow treatment. This study shows that some increase in yield can be achieved by using a single-year alfalfa hay crop instead of fallow; however, exclusive green manuring of chickling vetch and lentil crops can produce the most increase in yield and N uptake in subsequent crops. Key words: Alfalfa (single-year), legumes (annual), green manure, nitrogen, cropping system


1979 ◽  
Vol 59 (4) ◽  
pp. 1129-1137 ◽  
Author(s):  
ERNEST SEMU ◽  
D. J. HUME

Soybeans (Glycine max (L.) Merrill) often do not give yield responses to added fertilizer nitrogen (N) because high soil N levels inhibit fixation of atmospheric N2. Yield responses to N fertilizer applied at planting usually indicate that N2 fixation is less than optimal. The effects of inoculation with Rhizobium japonicum, and fertilizer N levels, on soybean N2(C2H2) fixation and seed yields in Ontario were investigated in ’ 1976 and 1977. Three locations were used each year, representing areas where soybeans had been grown for many years (Ridgetown), for only a few years (Elora), or not at all (Woodstock). Treatments were (a) Uninoculated + 0 N, (b–e) Inoculated + 0, 50, 100 or 200 kg N/ha. Results indicated that inoculation increased seed yields only when soybeans were introduced into new areas. Fertilizer N applications at planting time did not increase yields in areas where soybeans had been grown several times previously, indicating that N2 fixation could support maximum yields. Nodule number and mass, and N2(C2H2) fixation rates were all decreased by fertilizer N. An increase in nodule efficiency, later in the season, in high N treatments was most marked at Ridgetown.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 233-238 ◽  
Author(s):  
J. Anthony Mills ◽  
William W. Witt

Field experiments were conducted to evaluate the interactions of tillage systems with imazaquin and imazethapyr on weed control and soybean injury and yield. Control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail from imazaquin and imazethapyr in conventional tillage was generally equal to or greater than control in no-tillage. However, under limited rainfall, weed control in no-tillage was generally equal to or greater than control in conventional tillage. Reductions in soybean heights due to herbicide treatment were evident in both tillage systems in 1985 and 1986 but not in. Soybean yields were reduced in 1985 from imazaquin at 140, 210, and 250 g/ha and imazethapyr at 105 and 140 g/ha. Yields were not reduced in 1986 and. Imazaquin and imazethapyr appear to provide adequate control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail in conventional and no-till systems.


2019 ◽  
Vol 70 (7) ◽  
pp. 585 ◽  
Author(s):  
Xiaoning Cao ◽  
Tingting Wu ◽  
Shi Sun ◽  
Cunxiang Wu ◽  
Caijie Wang ◽  
...  

Root traits are essential for optimising nutrient and water absorption and anchorage. However, changes in root traits and the contribution of root-to-shoot growth and development of soybean (Glycine max (L.) Merr.) across a century of breeding are poorly documented. In this study, we adopted a grafting technique, using 55 cultivars released in the three main soybean-production regions in China as rootstocks in a pot experiment and 24 cultivars from the Yellow-Huai-Hai Valley (YHH) region as rootstocks in a field experiment, with cv. Zigongdongdou as the common scion. Changes in soybean roots, including dry weight (DW) of roots, lateral root number (LRN) and taproot length (TRL), and their contribution to shoot development and biomass formation, including shoot DW, plant height and node number, were evaluated under optimal conditions in 2011. Aboveground traits declined with year of release in the YHH region and did not vary over time in the northern Heilongjiang province and mid-south Heilongjiang region except for shoot DW. The root traits root DW, LRN and TRL were similar over years of release in the pot and field experiments. The results suggest that the newer cultivars have lesser shoot growth and root capacity but the same amount of root growth as older cultivars. Root traits did not change during selection, suggesting that improvement in soybean root traits should be an aim in future breeding.


Sign in / Sign up

Export Citation Format

Share Document