Évolution des stocks de carbone organique dans le solaprès coupe dans la sapinière à bouleau jaune de l'est du Québec

2000 ◽  
Vol 80 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Sylvain St-Laurent ◽  
Rock Ouimet ◽  
Sylvie Tremblay ◽  
Louis Archambault

Following the Rio and Kyoto protocols, forest sequestration of organic C (Corg) appears to be among the measures to reduce atmospheric C. In this context, we assessed the evolution of soils' reserves of Corg after complete whole-tree forest harvesting in the balsam fir–yellow birch forest of eastern Quebec. The experimental design consisted of eight plots in mature stands, and 10 plots in 7-, 12-, and 22-yr-old clearcuts in the "Seigneurie du Lac Métis", located 80 km south-east of Rimouski, Quebec, Canada. The soil type was an Orthic Humo-ferric Podzol. Major Corg losses occured in the forest floor of the 7-, 12- and 22-yr-old harvested plots compared with mature stands. The FH horizon of harvested plots showed a loss of 44% (−30.5 t ha−1) in dry weight and 13.5% (−62.1 g kg–1) in Corg content between 7 and 22-yr-old harvested plots. More than half the Corg content of the forest floor was lost in that time (−52% or −16.6 t ha−1). The Corg stock of the L horizon were lowered only for the 7-yr-old treatment (2.5 t ha−1) compared with mature stands (4.9 t ha−1). No significant differences in the Corg stocked in the first 30 m of the mineral soil were found between treatments. It appears that the forest floor of balsam fir–yellow birch stands has become a source of Corg for at least 22 yr after forest harvesting. Key words: Forest harvesting, soil, organic carbon, forest floor

1986 ◽  
Vol 16 (4) ◽  
pp. 872-874 ◽  
Author(s):  
O. Q. Hendrickson

Three years after harvesting a mixed conifer–hardwood forest in Ontario, the density of sweet fern (Comptoniaperegrina (L.) Coult.) was far greater on a whole-tree harvest site (logging slash removed) than on an adjacent conventional harvest site (logging slash present). These differences were related to the degree of site disturbance, particularly forest floor removal. Nodule fixation rates also appeared to reflect the degree of disturbance, being highest in plants growing along a logging road where the sandy, nitrogen-poor mineral soil was exposed, and exceptionally low on the conventional harvest site (0.67 μmol C2H4 g dry weight−1 h−1). Overall, acetylene reduction activity showed a significant negative correlation (r = −0.77, p < 0.001) with total N.


1981 ◽  
Vol 11 (2) ◽  
pp. 389-400 ◽  
Author(s):  
Gerald E. Lang ◽  
Christopher S. Cronan ◽  
William A. Reiners

Forest floors, fallen branches and fallen tree boles were sampled in 13 balsam fir (Abiesbalsamea (L.) Mill.) stands in the subalpine zone (1220–1450 m) of the White Mountains in New Hampshire, U.S.A. These 13 stands were distributed in three sites of contrasting exposure, slope, and rockiness. Soil pits were excavated in three of the stands representing each of the three sites. The ash-free dry weights and major elemental contents of the forest floor and dead wood were compared along chronosequences following natural disturbances, between sites, and with other forest types. No significant trends in these components were found along chronosequence comparisons. For sites that are dissimilar in terms of physical position on the landscape and in the appearance of the trees, compensating biotic and abiotic factors apparently underlie the convergence in forest floor and soil characteristics, thereby eliminating site differences as well. The forest floor is massive; ash-free dry weight averages 92 200 kg•ha−1. Total soil profile ash-free weight is 323 600 kg•ha−1. The forest floor and mineral soil horizons are unusually rich in nitrogen and phosphorus, with weighted average ash-free nitrogen and phosphorus concentrations of 2.42 and 0.23%, respectively, in the forest floor. Total nitrogen and phosphorus contents of the forest floor are 2300 and 217 kg•ha−1, respectively. The weight and nitrogen and phorphorus contents of the fir forest floor are greater than that found in other regional forests and coniferous forests in general.


2002 ◽  
Vol 32 (2) ◽  
pp. 344-352 ◽  
Author(s):  
P W Clinton ◽  
R B Allen ◽  
M R Davis

Stemwood production, N pools, and N availability were determined in even-aged (10, 25, 120, and >150-year-old) stands of a monospecific mountain beech (Nothofagus solandri var. cliffortioides (Hook. f.) Poole) forest in New Zealand recovering from catastrophic canopy disturbance brought about by windthrow. Nitrogen was redistributed among stemwood biomass, coarse woody debris (CWD), the forest floor, and mineral soil following disturbance. The quantity of N in stemwood biomass increased from less than 1 kg/ha in seedling stands (10 years old) to ca. 500 kg/ha in pole stands (120 years old), but decreased in mature stands (>150 years old). In contrast, the quantity of N stored in CWD declined rapidly with stand development. Although the mass of N stored in the forest floor was greatest in the pole stands and least in the mature stands, N availability in the forest floor did not vary greatly with stand development. The mass of N in the mineral soil (0–100 mm depth) was also similar for all stands. Foliar N concentrations, net N mineralization, and mineralizable N in the mineral soil (0–100 mm depth) showed similar patterns with stage of stand development, and indicated that N availability was greater in sapling (25 years old) and mature stands than in seedling and pole stands. We conclude that declining productivity in older stands is associated more with reductions in cation availability, especially calcium, than N availability.


1970 ◽  
Vol 48 (3) ◽  
pp. 447-452
Author(s):  
Denis Lachance

The growth of Odontia bicolor in soil and in balsam fir wood was studied. In steam-sterilized organic soil, the fungus grows rapidly, producing a scanty and uniform growth, whereas in propylene oxide gas-treated or natural organic soil, it forms mycelial strands. In mineral soil, the fungus reacts as in organic soil except that growth is more sparse. The fungus grows through natural soil and colonizes new substrate more rapidly when mycelial strands are linked to an appropriate food base.The optimum temperature for growth on a 2.5% malt extract medium occurs between 22 and 27 °C. The fungus grows well in balsam fir wood at any moisture content above 42% of the oven-dry weight, and twice as fast in sapwood as in heartwood. Its growth is not influenced by previous storage of the wood, either frozen (−20 °C) or at a temperature of 2 °C for up to 16 weeks.


1999 ◽  
Vol 29 (3) ◽  
pp. 356-364 ◽  
Author(s):  
Yimin Zhang ◽  
M J Mitchell ◽  
C T Driscoll ◽  
G E Likens

Soil S constituents were evaluated before and after the whole-tree harvesting of Watershed 5 (W5) at the Hubbard Brook Experimental Forest, New Hampshire. Soil solution and stream water concentrations of SO42-, NO3-, and H+ were compared between W5 and W6 (reference watershed). Whole-tree harvesting increased phosphate-extractable SO42- (PSO4) in the E horizon, from 2 mg S·kg-1 soil in pre-harvest to 9 and 10 mg S·kg-1 soil 3 and 8 years post-harvest, respectively. Harvesting increased PSO4 in the Bh horizon from 11 mg S·kg-1 soil prior to harvesting to 20 and 25 mg S·kg-1 soil 3 and 8 years after harvesting, respectively. Temporal patterns in soil chemistry were also reflected in stream SO42-, NO3-, and H+ concentrations. Eight years after harvesting, PSO4 concentrations in the mineral soil increased with elevation. This elevational pattern was likely due to the higher concentrations of SO42- and H+ in soil solutions that enhanced SO42- adsorption at the higher elevations. The high H+ concentrations were attributed to enhanced nitrification and differences in vegetation at upper elevations. The importance of these factors were discussed with respect to the effects of forest harvesting and changes in atmospheric S deposition.


2007 ◽  
Vol 37 (6) ◽  
pp. 1118-1133 ◽  
Author(s):  
Rock Ouimet ◽  
Sylvie Tremblay ◽  
Catherine Périé ◽  
Guy Prégent

We assessed the organic C stocks and inferred their changes in vegetation biomass, forest floor, and soil using a 50 year chronosequence of red pine ( Pinus resinosa Ait.) plantations established on postagricultural fields in southern Quebec, Canada. The data come from soil and tree field surveys carried out in the 1970s in 348 sites. Organic C concentrations were usually measured in three major mineral soil horizons; for the remaining soil horizons, they were estimated using pedotransfer functions. The effect of soil order, drainage, and texture was analysed. Over 22 years, organic C accumulation rates (Mg C·ha–1·year–1) were 1.66 ± 0.03 in vegetation biomass, 0.56 ± 0.07 in forest floor, 0.86 ± 0.47 in loamy soils (0–100 cm), and  –0.18 ± 0.24 in sandy soils (0–100 cm). The greater rate of C accumulation in loamy soils was due to the contribution of the 30–100 cm subsoil layer. The overall net accumulation of organic C in these plantation ecosystems was estimated to 51.4 ± 4.8 Mg C·ha–1 at 22 years. Soils of these plantations acted as a C sink in the first two decades, particularly in loamy soils compared with sandy soils, with no major differences among soil order or drainage.


1996 ◽  
Vol 26 (7) ◽  
pp. 1266-1272 ◽  
Author(s):  
W.Z. Huang ◽  
J.J. Schoenau

The purpose of this study was to characterize the quantity, distribution, and variance of water-soluble organic C (WSOC) in a soil under trembling aspen (Populustremuloides Michx.) in the southern boreal forest of Canada. WSOC was determined monthly from May to October 1994 in the forest floor horizons (L, F, H) and mineral soil (Ae) of an aspen stand in Prince Albert National Park, Saskatchewan. The concentration of WSOC varied considerably with profile depth, but varied little among the slope positions and aspects. The L horizon had the highest WSOC concentration (425–8690 mg•kg−1 ovendried soil), followed by the F, H, and Ae horizons. The concentration of WSOC in the Ae horizon was significantly related to the concentration in forest floor horizons above. Water-soluble organic C in the Ae horizon likely was derived from the overlying organic layer by leaching. In a laboratory incubation, the rate of WSOC release (the net result of release and uptake) during incubation decreased continuously over time, but in the field, the rate of WSOC release decreased slightly early in the growing season, but increased later in the season as new litter fall reached the forest floor. This indicates that litter fall is a major factor in the replenishment of WSOC in aspen forest stands.


2002 ◽  
Vol 32 (5) ◽  
pp. 903-914 ◽  
Author(s):  
Sylvie Tremblay ◽  
Rock Ouimet ◽  
Daniel Houle

Soil organic carbon (C) is an important component of forest carbon pools and should be taken into account in sustainable forest management. However, there is a need to derive indicators for this attribute, as organic C content (Mg·ha–1) in forest soils is generally not available in Quebec survey data. Thus, we developed models to predict organic C accumulation in the forest floor and in mineral soils of upland forest soils (i.e., with forest floor thickness [Formula: see text]30 cm) using soil survey data as input variables. The best-fit model for predicting forest floor organic C content consisted of the explanatory variables forest floor thickness, latitude, and longitude. The model R2 was 0.76, and its CV was 28%. The second best-fit model, excluding geographical coordinates, included forest floor thickness and mean growing season precipitation as explanatory variables (R2 = 0.71, CV = 29.5%). The model for predicting mineral soil organic C content was composed of two submodels: (i) organic C concentration of a mineral horizon as a function of its colour and (ii) bulk density of that horizon as a function of its estimated C concentration (obtained from the former model). The R2 of the model for predicting organic C content in mineral soils was 0.57, and its CV was 29%. The models were used to predict organic C contents in 5547 pedons, dispersed throughout the commercial forest of Quebec and for which basic soil profile description data were available. It was then possible to evaluate and compare mean soil C accumulation in different forest stand types and to construct two maps of soil organic C accumulation in upland forest soils of southern Quebec. The results pointed out that forest floor thickness combined with mineral soil horizon colour, texture class, and pH would be useful sustainable forest management indicators of organic C accumulation in upland forest soils.


2005 ◽  
Vol 35 (3) ◽  
pp. 667-673 ◽  
Author(s):  
G. Geoff Wang ◽  
Kevin J Kemball

Experimental seeding of balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) was implemented in three mature trembling aspen (Populus tremuloides Michx.) stands in southeastern Manitoba to test (i) the effect of vegetation (light) competition and seedbed type (undisturbed forest floor, exposed mineral soil, and rotten logs) on seedling recruitment over the first 2 years and (ii) the effect of broadleaf litter exclusion on seedling mortality during the first winter. The study indicated that, with adequate seed supply, seedbed type was the most important factor limiting seedling recruitment, especially the recruitment of white spruce, in trembling aspen stands. Seedling recruitment on the best and the worst seedbeds differed by 1.8 times for balsam fir but by 19 times for white spruce. Significant differences in soil moisture and temperature were found between seedbed types. Broadleaf litter exclusion also facilitated the recruitment of balsam fir and white spruce, but only on undisturbed forest floor. Vegetation (light) competition, however, did not limit seedling recruitment. On the contrary, the presence of understory vegetation benefited seedling recruitment on rotten logs. Compared with white spruce, balsam fir is better adapted to regenerate in trembling aspen stands. Balsam fir was about 4, 12, and 36 times better than white spruce when regenerating on exposed mineral soil, rotten log, and undisturbed forest floor, respectively.


1985 ◽  
Vol 15 (1) ◽  
pp. 262-268 ◽  
Author(s):  
Gerald E. Lang

A chronosequence of three stands of balsam fir was sampled in 1974 and 1982; during these 8 years, recruitment was absent so mortality alone accounted for an 18–30% decrease in live tree density. In a mature 78-year-old stand, the mass of bole wood on the forest floor was 1.4 kg•m−2 compared with an estimated aboveground live and dead bole biomass of 17.2 kg•m−2. During 5 years of repetitive sampling, annual bole input to the forest floor was episodic and variable in time and space, ranging from 3 to 365 g•m−2•year−1. A mass balance model was used to characterize the changes in wood litter on the forest floor. If most of the live trees die within a short period of time, bole input would occur in a pulse event and cause a peak in wood litter mass, which would then decline over time (and with stand maturation) as decomposition prevails. The assumption of steady-state conditions for wood litter is not valid; rather the mass of wood litter will wax and wane through time. Over a landscape, spatial patterns in the abundance of wood litter reflect a stand's history; old mature stands would have little wood litter while young regenerating stands would have large amounts. A maximum value for wood litter would be found in a stand located immediately behind a fir wave. Natural disturbances from wind and avalanches lead to contrasting patterns with high and low wood litter values, respectively. About 41% of forest turnover in the balsam fir zone is initiated from natural disturbance and fir waves.


Sign in / Sign up

Export Citation Format

Share Document