scholarly journals Sorghum Yield Response to Water Supply and Irrigation Management

Author(s):  
I. Kisekka ◽  
F. Lamm ◽  
A. Schlegel
2003 ◽  
Vol 95 (6) ◽  
pp. 1618-1624 ◽  
Author(s):  
Nouri Maman ◽  
Drew J. Lyon ◽  
Stephen C. Mason ◽  
Tom D. Galusha ◽  
Rob Higgins

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e86099 ◽  
Author(s):  
Guanghua Yin ◽  
Jian Gu ◽  
Fasheng Zhang ◽  
Liang Hao ◽  
Peifei Cong ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jose J. De Vega ◽  
Abel Teshome ◽  
Manfred Klaas ◽  
Jim Grant ◽  
John Finnan ◽  
...  

Abstract Background Miscanthus is a commercial lignocellulosic biomass crop owing to its high biomass productivity, resilience and photosynthetic capacity at low temperature. These qualities make Miscanthus a particularly good candidate for temperate marginal land, where yields can be limited by insufficient or excessive water supply. Differences in response to water stress have been observed among Miscanthus species, which correlated to origin. In this study, we compared the physiological and molecular responses among Miscanthus species under excessive (flooded) and insufficient (drought) water supply in glasshouse conditions. Results A significant biomass loss was observed under drought conditions in all genotypes. M. x giganteus showed a lower reduction in biomass yield under drought conditions compared to the control than the other species. Under flooded conditions, biomass yield was as good as or better than control conditions in all species. 4389 of the 67,789 genes (6.4%) in the reference genome were differentially expressed during drought among four Miscanthus genotypes from different species. We observed the same biological processes were regulated across Miscanthus species during drought stress despite the DEGs being not similar. Upregulated differentially expressed genes were significantly involved in sucrose and starch metabolism, redox, and water and glycerol homeostasis and channel activity. Multiple copies of the starch metabolic enzymes BAM and waxy GBSS-I were strongly up-regulated in drought stress in all Miscanthus genotypes, and 12 aquaporins (PIP1, PIP2 and NIP2) were also up-regulated in drought stress across genotypes. Conclusions Different phenotypic responses were observed during drought stress among Miscanthus genotypes from different species, supporting differences in genetic adaption. The low number of DEGs and higher biomass yield in flooded conditions supported Miscanthus use in flooded land. The molecular processes regulated during drought were shared among Miscanthus species and consistent with functional categories known to be critical during drought stress in model organisms. However, differences in the regulated genes, likely associated with ploidy and heterosis, highlighted the value of exploring its diversity for breeding.


1980 ◽  
Vol 16 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Thomas H. Morgan ◽  
Arlo W. Biere ◽  
Edward T. Kanemasu

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1579 ◽  
Author(s):  
Ahmed Elshaikh ◽  
Shi-hong Yang ◽  
Xiyun Jiao ◽  
Mohammed Elbashier

This study aims to offer a comprehensive assessment of the impacts of policies and institutional arrangements on irrigation management performance. The case study, the Gezira Scheme, has witnessed a significant decrease in water management performance during recent decades. This situation led to several institutional changes in order to put the system on the right path. The main organizations involved in water management at the scheme are the Ministry of Irrigation & Water Resources (MOIWR), the Sudan Gezira Board (SGB), and the Water Users Associations (WUAs). Different combinations from these organizations were founded to manage the irrigation system. The evaluation of these organizations is based on the data of water supply and cultivated areas from 1970 to 2015. The measured data were compared with two methods: the empirical water order method (Indent) that considers the design criteria of the scheme, and the Crop Water Requirement (CWR) method. Results show that the MOIWR period was the most efficient era, with an average water surplus of 12% compared with the Indent value, while the most critical period (SGB & WUAs) occurred when the water supply increased by 80%. The other periods of the Irrigation Water Corporation (IWC), (SGB & MOIWR), and (WUAs & MOIWR) had witnessed an increase in water supply by 29%, 63%, and 67% respectively. Through these institutional changes, the percentage of excessive water supply jumped from 12% to 80%. Finally, the study provides general recommendations associated with institutional arrangements and policy adoption to improve irrigation system performance.


Resources ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 175
Author(s):  
Agossou Gadedjisso-Tossou ◽  
Tamara Avellán ◽  
Niels Schütze

While the world population is expected to reach 9 billion in 2050, in West Africa, it will more than double. This situation will lead to a high demand for cereals in the region. At the same time, farmers are experiencing yield losses due to erratic rainfall. To come up with a sound and effective solution, the available but limited water should be used to achieve high yields through irrigation. Therefore, full and deficit irrigation management strategies were evaluated. The expected profit that can be obtained by a smallholder farmer under a conventional irrigation system in the short-term of investment was also assessed considering rope and bucket, treadle pump, and motorized pump water-lifting methods. The study focused on maize in northern Togo. The framework used in this study consisted of (i) a weather generator for simulating long-term climate time series; (ii) the AquaCrop model, which was used to simulate crop yield response to water; and (iii) a problem-specific algorithm for optimal irrigation scheduling with limited water supply. Results showed high variability in rainfall during the wet season leading to significant variability in the expected yield under rainfed conditions. This variability was substantially reduced when supplemental irrigation was applied. This holds for the irrigation management strategies evaluated in the dry season. Farmers’expected net incomes were US$ 133.35 and 78.11 per hectare for treadle pump and rope and bucket methods, respectively, under 10% exceedance probability. The motorized pump method is not appropriate for smallholder farmers in the short run.


2012 ◽  
Vol 48 (3) ◽  
pp. 472-472
Author(s):  
BERHANU ABRHA ◽  
NELE DELBECQUE ◽  
DIRK RAES ◽  
ALEMTSEHAY TSEGAY ◽  
MLADEN TODOROVIC ◽  
...  

In the published article Berhanu et al. (2012) one of the authors’ names was misspelled and should have read ElineVanuytrecht.


2020 ◽  
Vol 63 (6) ◽  
pp. 1813-1825
Author(s):  
Thomas J. Trout ◽  
Terry A. Howell ◽  
Marshall J. English ◽  
Derrel L. Martin

HighlightsDeficit irrigation may maximize net income when irrigation water supplies are limited or expensive.Water production functions are used with economic parameters to maximize net income with deficit irrigation.Net income may be insensitive to the amount of deficit irrigation if production costs are appropriate for anticipated yield.Deficit irrigation increases risk.Abstract. Competition for, regulation of, and depletion of water supplies in the western U.S. has resulted in reduced water available for irrigating crops. When the water supply is expensive or inadequate to meet full crop water requirements, deficit irrigation (DI) may maximize net income (NI) by reducing use of expensive water or irrigating more land with limited irrigation supplies. Managed DI entails rational planning and strategic water allocation to maximize NI when water supplies are constrained. Biophysical and economic relationships were used to develop NI models for DI and determine water allocation strategies that maximize NI under three types of water supply constraints. The analyses determined that potential benefits of DI are greatest when water is expensive, irrigation efficiency is low, the water supply is flexible, and rainfed production is not economically viable. When production costs are appropriate for anticipated yields, NI is less sensitive to DI planning decisions. Deficit irrigation will become more important as irrigation water supplies continue to decline in the future. Net income analysis can assist growers in making rational DI decisions. Keywords: Deficit irrigation, Economic analysis, Irrigation management, Net income, Optimization, Water productivity.


Sign in / Sign up

Export Citation Format

Share Document