scholarly journals Lithostratigraphy and Sedimentological Characteristics of the Calciturbidites of the Babadağ Formation-Tavas Nappe (SW Turkey)

2021 ◽  
Vol 74 (1) ◽  
pp. 1-20
Author(s):  
Basiru Mohammed Kore ◽  
◽  
Murat Gül ◽  
Ceren Küçükuysal ◽  
Bilal Sarı ◽  
...  

The Lycian Nappes contain slices of ophiolites and sedimentary rocks of various ages that crop out in SW Turkey. They evolved and were emplaced under the effect of the Late Cretaceous-Miocene compressional regime. The Tavas Nappe is part of the Lycian Nappes and contains Jurassic-Eocene sediments. The Babadağ Formation, forming the middle part of the Tavas Nappe, is composed of limestone at the base and various sized calciturbidites with chert intercalations in the upper part. The Standard Microfacies Classification (SMF of FLÜGEL, 2004) indicates that the entire unit was deposited mainly in a deep-shelf environment (Facies Zone – FZ-2), deep-sea (FZ-1), toe of slope (FZ-3) and on the continental slope (FZ-4). Calcite and quartz dominate the bulk mineralogy of the calciturbidites with higher SiO2 and CaO weight percentages than other major oxides. Additionally, the presence of Na2O, K2O, Al2O3, MgO, TiO2 and Fe2O3 is associated with the local sediment input. Tectonism and sea level fluctuations were the main triggering factors of the changes in the original depositional environment of the Babadağ Formation. Additionally, grain size and the amount of sediment input control the calciturbidite type and extension. Si enriched water circulation and Si and Ca substitution were responsible for the abundant chert formation during diagenesis of the units. Post depositional tectonic activities during transportation and emplacement of the nappes resulted in calcite filled cracks that cut both the calciturbidites and cherts. Study of the different nappe slices provides valuable information about syn- and post- depositional changes of the lithostratigraphic units.

1994 ◽  
Vol 6 (4) ◽  
pp. 517-527 ◽  
Author(s):  
Duncan Pirrie

Late Cretaceous sedimentary rocks assigned to the Santa Marta (Herbert Sound Member) and López de Bertodano (Cape Lamb and Sandwich Bluff members) formations of the Marambio Group, crop out on Cape Lamb, Vega Island. Although previous studies have recognized that these sedimentary rocks were derived from the northern Antarctic Peninsula region, the work presented here allows the provenance and palaeogeographical evolution of the region to be described in detail. On the basis of both sandstone petrography and clay mineralogy, the Herbert Sound and Cape Lamb members reflect sediment input from a low relief source area, with sand grade sediment sourced from low grade metasediments, and clay grade sediment ultimately derived from the weathering of an andesitic source area. In contrast, the Sandwich Bluff Member reflects a switch to a predominantly andesitic volcaniclastic source. However, this sediment was largely derived from older volcanic suites due to renewed source area uplift, with only a minor component from coeval volcanism. Regional uplift of both the arc terrane and the western margin of the James Ross Basin was likely during the Maastrichtian.


2018 ◽  
Vol 47 (1) ◽  
pp. 23-36
Author(s):  
Boris Valchev ◽  
Dimitar Sachkov ◽  
Sava Juranov

The Paleogene sedimentary rocks in the north-easternmost part of the territory of Bulgaria have been penetrated by numerous boreholes. In terms of regional tectonic zonation, the study area is a part of the onshore sector of the Moesian Platform, which partly includes the South Dobrogea Unit and the easternmost part of the North Bulgarian Dome with its eastern slope. The lithostratigraphy of the Paleogene successions consists of six formal units (the Komarevo, Beloslav, Dikilitash, Aladan, Avren, and Ruslar formations) and one informal unit (glauconitic marker). For compiling an overall conception of the regional aspects (lithology, thickness, spatial distribution, and relationships) of the individual lithostratigraphic units and for illustration of their spatial distribution, a 3D lithostratigraphic model based on reinterpretation of individual borehole sections has been created. The model database was compiled by integration of the original lithological data from 338 borehole sections.


2021 ◽  
Author(s):  
Irfan Sh. Asaad ◽  

Lithostratigraphy and microfacies analysis of the Avanah Formation (Middle Eocene) were studied in the Gomaspan section in the Bina Bawi anticline, northeast of Erbil city, Kurdistan Region, Iraq. The field observations refer that the formation attains 56 m of medium to thick bedded yellow limestone, grey dolomitic limestone and blue marly dolomitic limestone interbedded with thin beds of blue marl and dark grey shale with an interval of sandy limestone in the middle part and thin to medium bedded limestone interbedded with red mudstone. The petrographic study of 29 thin sections of Avanah carbonates revealed that the majority of the matrix is carbonate mud (micrite) with few microspar. The skeletal grains include benthic foraminifera, dasycladacean green algae, ostracods, calcispheres, pelecypods, rare planktonic foraminifera and bryozoa in addition to bioclasts. Non-skeletal grains encompass peloids, oncoids, intraclasts and extraclasts with common monocrystalline quartz. Based on the field observation and petrographic analysis, three different lithostratigraphic units were identified. They are in ascending order: A-Thick bedded dolomitic marly limestone interbedded with shale. B- Bedded dolomitic limestone interbedded with shale and marl. C- Thin to medium bedded limestone interbedded with red mudstone. Depending on detailed microfacies analysis of carbonate rocks, three main microfacies and 12 submicrofacies are recognized. From the sum of all petrographic, facies, textural analyses, it is concluded that Avanah Formation in Gomaspan section, was deposited in shallow marine environment, semi restricted lagoon, in lower and upper parts and open lagoon environment in the middle part interval.


2019 ◽  
Vol 8 (2) ◽  
pp. 65-80
Author(s):  
Unggul Prasetyo Wibowo ◽  
Anton Ferdianto ◽  
Nurul Laili ◽  
Dida Yurnaldi ◽  
Ruli Setiawan

Cisaar Valley is located on the east part of Sumedang Regency, West Jawa Province. It’s close to the boundary of Sumedang-Majalengka Regency. In this location the sandy and clay dominated sedimentary rocks are well exposed along the outcrops in the Cisaar Valley. These sedimentary rocks is inferred from Pliocene-Pleistocene deposits from Kaliwangu and Citalang Formation. Foraminifera microfossil that commonly used for interpretation of depositional environment is rarely found, whereas freshwater mollusk and vertebrate fossils often found in the sediment rocks of this area.  This condition raises a question, what is the environment of this valley in the past? Data obtained from measured stratigraphic sections along Cisaar river and its tributary rivers in Cibengkung and Cirendang hamlets, Jembarwangi village. There are at least three depositional paleoenvironments which from old to young are: shallow marine, estuarine and fluviatil braided channel depositional paleoenvironment.  Characteristics of the lower, middle and upper of the estuarine environment were found in this Cisaar Valley as the evidences of the oceanic regression processes was happened in the past in this area. 


2011 ◽  
Vol 182 (2) ◽  
pp. 133-148 ◽  
Author(s):  
André Poisson ◽  
Fabienne Orszag-Sperber ◽  
Erdal Kosun ◽  
Maria-Angella Bassetti ◽  
Carla Müller ◽  
...  

Abstract The Mio-Pliocene basins around the Antalya gulf in SW Turkey developed above the Tauric Mesozoic platforms on which the Antalya nappes had been thrusted (in Late Cretaceous-Paleocene times). The closure of the initial Isparta Angle during these events (E-W compression) initiated the N-S orientation of the main structural lines, which persisted later and explains the orientation of the Aksu basin in contrast with the E-W orientation of the eastern Neo-gene Mediterranean basins. The area, and all southwestern Turkey, became emergent at the end of the Oligocene and were the site of shallow-marine carbonate deposits in the Chattian-Aquitanian, giving way to the wide Lycian basin in Burdigalian-Langhian times. The progressive emplacement of the Lycian nappes from the north over this basin provoked first its subsidence and then its emersion when the nappes attained their final position over the Bey Daglari platform in Langhian times. Coinciding, or in response to the Lycian nappes emplacement, the Aksu basin was initiated as an elongated N-S graben which was filled by thick accumulations of terrestrial and marine deposits(including coral reefs), which derived from the erosion of the Lycian allochton and its basement (Langhian?, Serravallian and Tortonian times). The syn-sedimentary tectonics : reactivation of the normal faults along the west margin of the basin, the continuous uplift of the neighbouring continental areas (beginning of the Aksu thrust), governed the geometry of the basin. As a result and due to the uplift of its northern margin, the Aksu basin migrated towards the south and in Messinian times it was reduced to a narrow gulf along the eastern margin of which the Gebiz limestones were deposited as fringing coral reefs. The age of these limestones has been debated. Our new data allow us to attribute them to the Messinian. The drastic retreat of the sea at the end of this period, provoked the erosion of large parts of the Messinian deposits and the formation of deep canyons on land and under the sea down to the Antalya abyssal plain, in which evaporites were deposited. During the Zanclean transgression, the Eskiköy-Kargi canyon was filled by coarse clastics of a Gilbert delta derived from the northern continental area following a model well known elsewhere in the Mediterranean basins. Southward, shallow-marine sands and marls unconformably cover the remnants of the Messinian deposits and the emergent areas of the southern Antalya gulf. After Zanclean times (end of Pliocene?), the Aksu basin was deformed, due to the west-directed Aksu compressional event (end of the Aksu thrust). Quaternary terraces of the Aksu river at various altitudes, as well as the terraces of the Antalya tufa can be related to sea level fluctuations.


2021 ◽  
Vol 2 (1) ◽  
pp. 201-206
Author(s):  
Aleksei Yu. Popov ◽  
Evgeny S. Sobolev ◽  
Artem Ya. Shevko ◽  
Andrei V. Yadrenkin

The volcanogenic formations of the middle part of the Pronchishchev ridge are considered. Based on new data from the lithological, petrographic, geochemical studies of igneous and volcanogenic sedimentary rocks and stratigraphic studies of the Upper Permian-Lower Triassic terrigenous strata that enclose them, a model of their spatial relationship is proposed. It is shown that the dolerite body and the adjacent tuff breccia in the field of development of Upper Permian rocks as well as tuffite gravelites in the field of Lower Triassic rocks are a single complex of formations of different parts of the diatreme. The time of implantation of the diatreme is defined as the beginning of the Late Olenek. The wide development of vent facies dolerites in the diatreme may indicate the repeated activation of the supply channel.


Sign in / Sign up

Export Citation Format

Share Document