Discovery of small-molecule modulators of melanogenesis by docking-based virtual screening

Author(s):  
Miernisha Abudureyimu ◽  
Deng Zang ◽  
Ainiwaer Talifu ◽  
Weiliang Zhu ◽  
Haji Akber Aisa

Background: Vitiligo is a relatively common depigmenting skin disorder. UV light stimulation is often used to obtain repigmentation. Wnt signaling regulates melanocyte differentiation, and expression of TYR is upregulated in narrow-band UVB-treated epidermis. Manipulation of these two pathways by drugs could serve as one of the therapeutic approaches for durable repigmentation. Methods and results: CD9 was identified as a novel TYR activator by virtual screening and bioactivity assay. CD9 activated the Wnt signaling pathway through triggering translocation of β-catenin from cytoplasm to nucleus. Conclusion: The pathogenesis of vitiligo is complicated and varies with each individual, so combination therapy may be much more suitable for treatment of vitiligo. CD9 could synergize with other anti-inflammatory compounds or autoimmune suppressors to shorten repigmentation time and improve efficacy.

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Chun-Chun Chang ◽  
Sheng-Feng Pan ◽  
Min-Huang Wu ◽  
Chun-Tse Cheng ◽  
Yan-Rui Su ◽  
...  

The abnormal Wnt signaling pathway leads to a high expression of β-catenin, which causes several types of cancer, particularly colorectal cancer (CRC). The inhibition of tankyrase (TNKS) activity can reduce cancer cell growth, invasion, and resistance to treatment by blocking the Wnt signaling pathway. A pharmacophore search and pharmacophore docking were performed to identify potential TNKS inhibitors in the training databases. The weighted MM/PBSA binding free energy of the docking model was calculated to rank the databases. The reranked results indicated that 26.98% of TNKS inhibitors that were present in the top 5% of compounds in the database and near an ideal value ranked 28.57%. The National Cancer Institute database was selected for formal virtual screening, and 11 potential TNKS inhibitors were identified. An enzyme-based experiment was performed to demonstrate that of the 11 potential TNKS inhibitors, NSC295092 and NSC319963 had the most potential. Finally, Wnt pathway analysis was performed through a cell-based assay, which indicated that NSC319963 is the most likely TNKS inhibitor (pIC50 = 5.59). The antiproliferation assay demonstrated that NSC319963 can decrease colorectal cancer cell growth; therefore, the proposed method successfully identified a novel TNKS inhibitor that can alleviate CRC.


2010 ◽  
Vol 34 (8) ◽  
pp. S41-S41
Author(s):  
Yang Bi ◽  
Yun He ◽  
Tingyu Li ◽  
Tao Feng ◽  
Tongchuan He

2006 ◽  
Vol 175 (4S) ◽  
pp. 136-136
Author(s):  
Ralph Buttyan ◽  
Xuezhen Yang ◽  
Min-Wei Chen ◽  
Debra L. Bemis ◽  
Mitchell C. Benson ◽  
...  

Pneumologie ◽  
2012 ◽  
Vol 66 (06) ◽  
Author(s):  
A Tretyn ◽  
KD Schlüter ◽  
W Janssen ◽  
HA Ghofrani ◽  
F Grimminger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document