Characterization of solid dispersions of itraconazole and vitamin E TPGS prepared by microwave technology

2010 ◽  
Vol 2 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Mariarosa Moneghini ◽  
Nicola De Zordi ◽  
Dario Solinas ◽  
Stefano Macchiavelli ◽  
Francesco Princivalle
2019 ◽  
Vol 1 ◽  
pp. 100014 ◽  
Author(s):  
Christina Koulouktsi ◽  
Stavroula Nanaki ◽  
Panagiotis Barmpalexis ◽  
Margaritis Kostoglou ◽  
Dimitrios Bikiaris
Keyword(s):  

Author(s):  
GAGANDEEP SINGH ◽  
NAVJOT SINGH ◽  
RANDEEP KUMAR ◽  
NEENA BEDI

Objective: The present study entails the development of nevirapine (NVP)-loaded solid dispersions for improvement of solubility and in vitro profile. Methods: Solid dispersions were prepared through blending with a hydrophilic polymer and Vitamin E tocopherol polyethylene glycol succinate (TPGS) using the solvent evaporation method. The optimized formulations were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and morphological investigations by scanning electron microscopy. The optimized formulation was converted into fast dissolving tablets (FDTs) through direct compression technique and was characterized for pre- and post-compression parameters. Both amorphous dispersions and FDTs were evaluated for in vitro drug release. Results: NVP showed pH-dependent solubility in different pH media. Above 0.002% w/v Vitamin E TPGS, a linear relationship was observed between the NVP solubility and Vitamin E TPGS concentration. According to the study, the most suitable formulation was NVP:Vitamin E TPGS (1:0.75) in 30 ml solvent with a drug release of 82.96% in 2 h. The analysis of dissolution data of optimized formulation indicated the best fitting with the Higuchi model. FDTs exhibited faster drug release of about 50% in 5 min indicating desired attributes for the immediate dosage form. Conclusion: The present study vouches for better in vitro profile of NVP from solid dispersion based FDTs.


2021 ◽  
Author(s):  
Adnan M. Jasim ◽  
Mohammed J. Jawad

D-tocopheryl polyethylene glycol succinate (Vitamin E TPGS) has been approved as a safe pharmaceutical adjuvant by FDA, and several drug delivery systems (DDS) based on TPGS have been developed. TPGS properties as a P-gp inhibitor, solubilizer/absorption and permeation enhancer in drug delivery and TPGS-related formulations such as nanocrystals, nanosuspensions, tablets/solid dispersions, vaccine system adjuvant, nutritional supplement, film plasticizer, anticancer reagent, and so on, are discussed in this review. Consequenly, TPGS can inhibit ATP-dependent P-glycoprotein activity and act as a potent excipient that promotes the efficiency of delivery and the therapeutic effect of drugs. Inhibition of P-gp occurs through mitochondria-dependent inhibition of the P-gp pump. Many of the latest studies address the use of TPGS for many poorly water-soluble or permeable drugs in the manufacture of nanodrugs or other formulations. In addition, it has been reported that TPGS shows a robust improvement in chylomicron secretion at low concentrations and improves intestinal lymphatic transport, which would also boost the potential of drug absorption. It also indicates that there are still many problems facing clinical translation of TPGS-based nanomedicines, requiring a more deep evaluation of TPGS properties and a future-based delivery method.


Author(s):  
Kumar P ◽  
S Kumar ◽  
A Kumar ◽  
M Chander

The purpose of this study was to prepare and characterize solid dispersions of the antibacterial agent Cefdinir with PEG 4000 and PVP K-30 with a view to improve its dissolution properties. Investigations of the properties of the dispersions were performed using release studies, X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR). The results obtained showed that the rate of dissolution of Cefdinir was considerably improved when formulated in solid dispersions with PVP K-30 and PEG 4000 as compared with pure drug and physical mixtures. The results from XRD studies showed the transition of crystalline nature of drug to amorphous form, while FTIR studies demonstrated the absence of drug-carriers interaction.


Author(s):  
René M. Guillén Pineda ◽  
María D. Salvador ◽  
Carlos F. Gutiérrez‐González ◽  
Jose M. Catalá‐Civera ◽  
Amparo Borrell

Sign in / Sign up

Export Citation Format

Share Document