Research on the Synthetically Quantitative Evaluation System of Ecological Environment Quality of the Water Conservancy and Hydroelectric Power Project

2013 ◽  
Vol 8 (9) ◽  
pp. 474-480
Author(s):  
Guodong Zhong ◽  
Li Xu
2013 ◽  
Vol 748 ◽  
pp. 987-993
Author(s):  
Qing Huang

The project quality management is not only modern management engineering is an important component, but also the core of project management, project quality is the root of the project construction, project construction process is to determine the key to success. Water conservancy and hydropower engineering quality management is water conservancy and hydropower engineering supervision engineer control core content. But due to the characteristics of water conservancy and hydropower engineering, but also makes the water conservancy and hydropower engineering quality control are both complicated and arduous task. In water conservancy and hydropower project construction practice, the quality problems still affects the project delivery on schedule and influence the realization of the expected benefits. Although in recent years countries successively formulated the department about the engineering quality of laws and regulations, the administrative departments at all levels of construction have also increased the quality of large project administrative supervision dynamics, but because has not yet set up a scientific system of quality evaluation index system, makes the project quality control lack of reliable data sources and realistic basis. In this paper, we investigate the problems for synthetically quantitative evaluation system of ecological environment quality of the water conservancy and hydroelectric power project with triangular fuzzy linguistic information. We utilize the fuzzy linguistic weighted harmonic mean (FLWHM) operator to aggregate the triangular fuzzy linguistic information corresponding to each alternative and get the overall value of the alternatives, then rank the alternatives and select the most desirable one (s). Finally, an illustrative example is given.


2014 ◽  
Vol 644-650 ◽  
pp. 2587-2590
Author(s):  
Yu Qin Xu ◽  
Xiang Ling Zhan ◽  
Zheng Ren ◽  
Tong Li ◽  
Guo Hua Qiao ◽  
...  

The quantitative classification of transformer supervision can improve the quality of transformer supervision. For the contents of transformer supervision, this paper establishes an index system of transformer supervision. Example results show that the extension matter-element theory which is applied to transformer supervision quantitative evaluation is more reasonable. According to the categories of transformer supervision, this paper quantifies the uncertainty and builds the evaluation system of transformer supervision. It realizes the evaluation of transformer supervision and gets the key factors which influence the transformer supervision. This evaluation system is conducive to guide the transformer supervision to be more scientific and effective.


2022 ◽  
Vol 14 (2) ◽  
pp. 345
Author(s):  
Xinran Nie ◽  
Zhenqi Hu ◽  
Mengying Ruan ◽  
Qi Zhu ◽  
Huang Sun

The large-scale development and utilization of coal resources have brought great challenges to the ecological environment of coal-mining areas. Therefore, this paper has used scientific and effective methods to monitor and evaluate whether changes in ecological environment quality in coal-mining areas are helpful to alleviate the contradiction between human and nature and realize the sustainable development of such coal-mining areas. Firstly, in order to quantify the degree of coal dust pollution in coal-mining areas, an index-based coal dust index (ICDI) is proposed. Secondly, based on the pressure-state-response (PSR) framework, a new coal-mine ecological index (CMEI) was established by using the principal component analysis (PCA) method. Finally, the coal-mine ecological index (CMEI) was used to evaluate and detect the temporal and spatial changes of the ecological environment quality of the Ningwu Coalfield from 1987 to 2021. The research shows that ICDI has a strong ability to extract coal dust with an overall accuracy of over 96% and a Kappa coefficient of over 0.9. As a normalized difference index, ICDI can better quantify the pollution degree of coal dust. The effectiveness of CMEI was evaluated by four methods: sample image-based, classification-based, correlation-based, and distance-based. From 1987 to 2021, the ecological environment quality of Ningwu Coalfield was improved, and the mean of CMEI increased by 0.1189. The percentages of improvement and degradation of ecological environment quality were 71.85% and 27.01%, respectively. The areas with obvious degradation were mainly concentrated in coal-mining areas and built-up areas. The ecological environment quality of Pingshuo Coal Mine, Shuonan Coal Mine, Xuangang Coal Mine, and Lanxian Coal Mine also showed improvement. The results of Moran’s Index show that CMEI has a strong positive spatial correlation, and its spatial distribution is clustered rather than random. Coal-mining areas and built-up areas showed low–low clustering (LL), while other areas showed high–high clustering (HH). The utilization and popularization of CMEI provides an important reference for decision makers to formulate ecological protection policies and implement regional coordinated development strategies.


2011 ◽  
Vol 356-360 ◽  
pp. 2571-2574 ◽  
Author(s):  
Feng Gang Dai ◽  
Xiao Gang Fu ◽  
Huan Jie Cai

In this paper, based on the healthy development of ecological environment in the Loess Plateau area , proposed 18 indices of ecological environment quality evaluation, established index system of ecological environment quality evaluation and fuzzy comprehensive evaluation model. Taking Jiuyuangou basin as example, made a conclusion that Jiuyuangou ecological quality of the environment is under Ⅱ, fragile ecological environment quality for the general area, it is because of measures implementation of the Soil and Water Conservation Demonstration Area to increase the vegetation cover, soil erosion control, and promote the improvement of ecological environment.


2021 ◽  
Vol 13 (9) ◽  
pp. 5075
Author(s):  
Panpan Hu ◽  
Feng Li ◽  
Xiao Sun ◽  
Yali Liu ◽  
Xinchuang Chen ◽  
...  

Based on the land-use data of 2000 and 2015, this study makes a quantitative analysis of the ecological environment effect in Pearl River Delta using the ecological environment quality index and the ecological contribution rate of land-use change types. The results showed the following: (1) During 2000–2015, the land-use changes in Pearl River Delta mainly manifested in the reduction of cultivated land, forest land, water area, and unused land, while the area of construction land and grassland showed an increasing trend. The quality of ecological environment in the Pearl River Delta was largely stable but slightly declined overall; (2) Over the past 15 years, the comprehensive ecological environment index of the Pearl River Delta urban agglomeration has decreased by 0.02. With an average annual decrease of 0.11%. The spatial expansion caused by urbanization had the most profound impact on the decline of the ecological environment quality in the Pearl River Delta; (3) The eco-environmental quality indices of various cities in the Pearl River Delta declined to varying degrees. The city with the largest decline was Dongguan, followed by Shenzhen and Zhongshan. The spatial differentiation characteristics of the eco-environmental quality index indicate that the ecological quality preferences of cities distributed around the study area and close to the inland areas, while the ecological quality of the central coastal cities are biased. The quality of the ecological environment is related to the basis of the regional ecological environment. The research results have important practical significance for maintaining regional ecological balance and promoting the sustainable use of land resources, and they provide a reference for the study of the ecological and environmental effects of land-use changes in key cities in economically developed areas.


2021 ◽  
Vol 13 (14) ◽  
pp. 2815
Author(s):  
Xinran Nie ◽  
Zhenqi Hu ◽  
Qi Zhu ◽  
Mengying Ruan

Over the last few years, under the combined effects of climate change and human factors, the ecological environment of coal mining areas has undergone tremendous changes. Therefore, the rapid and accurate quantitative assessments of the temporal and spatial evolution of the ecological environment quality is of great significance for the ecological restoration and development planning of coal mining areas. This study applied the ecological environment index after topographic correction to improve the remote sensing ecological index (RSEI). Based on a series of Landsat images, the ecological environment quality of Yangquan Coal Mine in Shanxi Province from 1987 to 2020 was monitored and evaluated by an improved remote sensing ecological index. The results show that after topographic correction, the topographic effect of the remote sensing ecological index was greatly reduced, and its practicability was improved. From 1987 to 2020, the ecological environment quality of Yangquan Coal Mine was improved, and the mean of the RSEI increased from 0.4294 to 0.6379. The ecological environment quality of the six coal mines in the study area was improved. Among the six coal gangue dumps, the ecological environmental quality of D1, D2, D3, and D4 has improved, and the ecological environment quality of D5 and D6 worsened. The percentages of improved, unchanged, and degraded ecological environment quality in the entire coal mining area were 77.08%, 0.99%, and 21.93%, respectively. The global Moran’s index was between 0.7929 and 0.9057, and it was shown that there was a strong positive correlation between the ecological environmental qualities of the study area, and that its spatial distribution was clustered rather than random. The LISA cluster map showed that the aggregation and dispersion degree of ecological environment quality was mainly high–high clustering and low–low clustering over the whole stage. During the study period, temperature and precipitation had limited impacts on the ecological environment quality of Yangquan Coal Mine, while the coal mining activities and urbanization construction seriously affected the local ecological environment quality and the implementation of ecological restoration policies, regulations, and measures was the main reason for the improvement of the ecological environment quality.


Author(s):  
X. Wang ◽  
C. Liu ◽  
Q. Fu ◽  
B. Yin

In order to monitor the change of regional ecological environment quality, this paper use MODIS and DMSP / OLS remote sensing data, from the production capacity, external disturbance changes and human socio-economic development of the three main factors affecting the quality of ecosystems, select the net primary productivity, vegetation index and light index, using the principal component analysis method to automatically determine the weight coefficient, construction of the formation of enhanced remote sensing ecological index, and the ecological environment quality of Hainan Island from 2001 to 2013 was monitored and analyzed. The enhanced remote sensing ecological index combines the effects of the natural environment and human activities on ecosystems, and according to the contribution of each principal component automatically determine the weight coefficient, avoid the design of the weight of the parameters caused by the calculation of the human error, which provides a new method for the operational operation of regional macro ecological environment quality monitoring. During the period from 2001 to 2013, the ecological environment quality of Hainan Island showed the characteristics of decend first and then rise, the ecological environment in 2005 was affected by severe natural disasters, and the quality of ecological environment dropped sharply. Compared with 2001, in 2013 about 20000 square kilometers regional ecological environmental quality has improved, about 8760 square kilometers regional ecological environment quality is relatively stable, about 5272 square kilometers regional ecological environment quality has decreased. On the whole, the quality of ecological environment in the study area is good, the frequent occurrence of natural disasters, on the quality of the ecological environment to a certain extent.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liyuan Dong ◽  
Juan Shang ◽  
Rizwan Ali ◽  
Ramiz U Rehman

As an important platform for participating in international competition and cooperation, supporting economic growth and promoting coordinated regional development, urban agglomeration plays an important role in China’s economic, social and urbanization development. At this time, the Guanzhong Plain urban agglomeration (GZPUA), as the second largest urban agglomeration in western China, has a moderate population density. The high demand and high input of resources for population growth make the regional ecological destruction and environmental pollution more prominent. Therefore, it is of great practical significance to study the coordinated development of urbanization and ecological environment in GZPUA. By using the panel data of the GZPUA of China between 2008 and 2017, this study constructed evaluation index system of new-type urbanization and ecological environment quality and calculated the weights of the indices within the evaluation system via the improved entropy weight method, finally determined the new-type urbanization and ecological environment quality of each city. Then the coupling coordination degree model was used to analyze the coupling coordination relationship between two systems of GZPUA and their coupling stages and levels. In addition, the driving mechanism of their coordination degree was explored by using geographic detector method. The results show that: 1) The GZPUA new-type urbanization quality is characterized by both slow growth except Xi’an by a rapid increase. The ecological environment quality is characterized by both slow growth and fluctuations, except Qingyang by a decrease. There are spatial differences between the quality of new-type urbanization and the quality of ecological environment. 2) The 11 cities can be divided into high-high type (Xi’an), high-low type (Xianyang, Yuncheng, Linfen), low-low type (Pingliang, Weinan), and low-high type (Shangluo, Tianshui, Qingyang), different types should take different development paths. 3) The coordination degree between urbanization and ecological environment quality in GZPUA showed an upward trend, and formed a spatial distribution pattern with Xi’an as the core and decreasing to the outer circle cities, with regional differences. 4) The coordinated development of new-type urbanization and ecological environment is a process in which various driving factors act on different driving forces. These driving forces can be summarized as market driving force, endogenous driving force, outward driving force and administrative driving force. Based on the current situation of coordinated development of new-type urbanization and ecological environment in the GZPUA, it is recommended to promote the coordinated development of urbanization and ecological environment according to local conditions, strengthen the urbanization market mechanism, and optimize the industrial layout. Further, guide the flow of various factors across regions, strengthen technological innovation on the basis of breaking regional divisions, narrow the gap between urban and rural areas, establish the concept of coordinated development, and give play to the government’s “visible hand” role.


Sign in / Sign up

Export Citation Format

Share Document