scholarly journals RapidBurkholderia pseudomalleiidentification and antibiotic resistance determination by bacteriophage amplification and MALDI-TOF MS

Bacteriophage ◽  
2014 ◽  
Vol 4 (3) ◽  
pp. e29011 ◽  
Author(s):  
Christopher R Cox ◽  
Nicholas R Saichek ◽  
Herbert P Schweizer ◽  
Kent J Voorhees
2021 ◽  
Vol 67 (2) ◽  
pp. 3372-3382
Author(s):  
Brigitta Horváth ◽  
Ferenc Peles ◽  
Judit Gasparikné Reichardt ◽  
Edit Pocklán ◽  
Rita Sipos ◽  
...  

The presence of methicillin-resistant Staphylococcus aureus (MRSA) strains in the food chain has been confirmed by several studies in the European Union, but there are only limited data available in Hungary. The objective of the present study was to investigate the antibiotic resistance of Staphylococcus strains isolated from foods, using classical microbiological, molecular biological methods and the MALDI-TOF-MS technique, as well as the multi-locus sequence typing (MLST) of antibiotic resistant strains. During the study, 47 coagulase-positive (CPS) and 30 coagulase-negative (CNS) Staphylococcus isolates were collected. In the course of the MALDI-TOF-MS investigations, all CPS isolates (n=47) were found to be S. aureus species, while 8 different species were identified in the case of the CNS strains. Methicillin resistance was confirmed in two S. aureus strains, one of which had a sequence type not yet known, while the other MRSA strain was type ST398, which is the most common type of MRSA strain isolated from farm animals in the EU/EEA. (The abbreviation “MRSA” is often used in common parlance, but occasionally in the literature to denote “multidrug-resistant Staphylococcus aureus”. In the authors’ manuscript - the methicillin-resistant pathogen is correctly designated as such. Ed.)


Author(s):  
Zhaomin Cheng ◽  
Pinghua Qu ◽  
Peifeng Ke ◽  
Xiaohan Yang ◽  
Qiang Zhou ◽  
...  

Streptococcus agalactiae colonization in pregnant women can cause postpartum intrauterine infections and life-threatening neonatal infections. To formulate strategies for the prevention and treatment of S. agalactiae infections, we performed a comprehensive analysis of antibiotic resistance and a molecular-based epidemiological investigation of S. agalactiae in this study. Seventy-two S. agalactiae strains, collected from pregnant women, were subjected to antibiotic susceptibility tests; then, the screened erythromycin and clindamycin nonsusceptible isolates were used for macrolides and clindamycin resistance genes detection, respectively. Detection of resistance genes, serotyping, and determination of virulence genes were performed by polymerase chain reaction. The clonal relationships among the colonized strains were evaluated by multilocus sequence typing. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) mass peak analysis was performed to discriminate the specific sequence types (STs). In our study, 69.4% and 47.2% of the strains were nonsusceptible to erythromycin and clindamycin, respectively; the multidrug resistance rate was 66.7%. All erythromycin nonsusceptible strains harbored resistance genes, whereas only 52.9% of the clindamycin nonsusceptible strains possessed the linB gene. Erythromycin resistance was mainly mediated by the ermB or mefA/E genes. Four serotypes were identified, and the most common serotype was serotype III (52.8%), followed by Ib (22.2%), Ia (18.0%), and II (4.2%). All the strains were divided into 18 STs that were assigned to nine clonal complexes. Most of the major STs were distributed into specific serotypes, including ST19/serotype III, ST17/serotype III, ST485/serotype Ia, ST862/serotype III, and ST651/serotype III. Analysis of virulence genes yielded seven clusters, of which bca-cfb-scpB-lmb (61.6%) was the predominant virulence gene cluster. Among all ST strains distributed in this region, only the ST17 strains had a mass peak at 7620 Da. The outcomes of this study are beneficial for the epidemiological comparison of colonized S. agalactiae in different regions and may be helpful for developing the strategies for the prevention of S. agalactiae infection in Guangzhou. Furthermore, our results show that MALDI-TOF MS can be used for the rapid identification of the ST17 strains.


2013 ◽  
Vol 26 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Jaroslav Hrabák ◽  
Eva Chudáčková ◽  
Radka Walková

SUMMARYMatrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied as an identification procedure in clinical microbiology and has been widely used in routine laboratory practice because of its economical and diagnostic benefits. The range of applications of MALDI-TOF MS has been growing constantly, from rapid species identification to labor-intensive proteomic studies of bacterial physiology. The purpose of this review is to summarize the contribution of the studies already performed with MALDI-TOF MS concerning antibiotic resistance and to analyze future perspectives in this field. We believe that current research should continue in four main directions, including the detection of antibiotic modifications by degrading enzymes, the detection of resistance mechanism determinants through proteomic studies of multiresistant bacteria, and the analysis of modifications of target sites, such as ribosomal methylation. The quantification of antibiotics is suggested as a new approach to study influx and efflux in bacterial cells. The results of the presented studies demonstrate that MALDI-TOF MS is a relevant tool for the detection of antibiotic resistance and opens new avenues for both clinical and experimental microbiology.


2013 ◽  
Vol 7 (11-12) ◽  
pp. 767-778 ◽  
Author(s):  
Markus Kostrzewa ◽  
Katrin Sparbier ◽  
Thomas Maier ◽  
Sören Schubert

2020 ◽  
Vol 83 (12) ◽  
pp. 2080-2086
Author(s):  
HELA JRIBI ◽  
HANEN SELLAMI ◽  
SALHA B. AMOR ◽  
ASTRID DUCOURNAU ◽  
ELODIE SIFRÉ ◽  
...  

ABSTRACT Arcobacter is considered an emergent foodborne enteropathogen. Despite the high prevalence of this genus in poultry, the occurrence of Arcobacter spp. contamination in Tunisia remains unclear. The objectives of this study were (i) to isolate Arcobacter species (A. butzleri and A. cryaerophilus) by the culture method from different species of raw poultry meat, (ii) to verify the isolates by multiplex PCR (m-PCR) assay and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), and (iii) to determine the antibiotic resistance profiles of the isolates. A total of 250 poultry product samples (149 chicken and 101 turkey) were collected from various supermarkets in Sfax. The samples consisted of breasts, wings, legs, and neck skins. The overall isolation frequency of Arcobacter spp. was 10.4%. Arcobacter spp. were found in 13.42% of the chicken samples and in 5.49% of the turkey samples. All the acquired isolates were subject to detailed confirmation with subsequent species classification using m-PCR and MALDI-TOF MS. A. butzleri was found in 22 samples (84.61%) and A. cryaerophilus in 4 samples (15.38%). Thus, m-PCR and MALDI-TOF MS were able to detect A. butzleri significantly better than the conventional method (χ2 = 49.1 and P < 0.001). Arcobacter was isolated from poultry in every season, at contamination levels of 30.76, 23.07, 19.23, and 26.92% in summer, spring, autumn, and winter, respectively. The disk diffusion method was used to determine the susceptibility of Arcobacter isolates to six antimicrobial drugs. All A. butzleri isolates (n = 24) were significantly resistant to erythromycin (P = 0.0015), ampicillin (P = 0.001), and ciprofloxacin (P = 0.05). All tested A. cryaerophilus strains (n = 4) were susceptible to ampicillin, gentamicin, and amoxicillin–clavulanic acid. Multidrug resistance was observed in 83% of the Arcobacter spp. isolates. Our study detected Arcobacter spp. in Tunisian poultry; because of their multidrug resistance, these species may constitute a public health problem. HIGHLIGHTS


2007 ◽  
Vol 177 (4S) ◽  
pp. 297-297
Author(s):  
Kristina Schwamborn ◽  
Rene Krieg ◽  
Ruth Knüchel-Clarke ◽  
Joachim Grosse ◽  
Gerhard Jakse

Sign in / Sign up

Export Citation Format

Share Document