Occurrence and Antibiotic Resistance of Arcobacter Species Isolates from Poultry in Tunisia

2020 ◽  
Vol 83 (12) ◽  
pp. 2080-2086
Author(s):  
HELA JRIBI ◽  
HANEN SELLAMI ◽  
SALHA B. AMOR ◽  
ASTRID DUCOURNAU ◽  
ELODIE SIFRÉ ◽  
...  

ABSTRACT Arcobacter is considered an emergent foodborne enteropathogen. Despite the high prevalence of this genus in poultry, the occurrence of Arcobacter spp. contamination in Tunisia remains unclear. The objectives of this study were (i) to isolate Arcobacter species (A. butzleri and A. cryaerophilus) by the culture method from different species of raw poultry meat, (ii) to verify the isolates by multiplex PCR (m-PCR) assay and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), and (iii) to determine the antibiotic resistance profiles of the isolates. A total of 250 poultry product samples (149 chicken and 101 turkey) were collected from various supermarkets in Sfax. The samples consisted of breasts, wings, legs, and neck skins. The overall isolation frequency of Arcobacter spp. was 10.4%. Arcobacter spp. were found in 13.42% of the chicken samples and in 5.49% of the turkey samples. All the acquired isolates were subject to detailed confirmation with subsequent species classification using m-PCR and MALDI-TOF MS. A. butzleri was found in 22 samples (84.61%) and A. cryaerophilus in 4 samples (15.38%). Thus, m-PCR and MALDI-TOF MS were able to detect A. butzleri significantly better than the conventional method (χ2 = 49.1 and P < 0.001). Arcobacter was isolated from poultry in every season, at contamination levels of 30.76, 23.07, 19.23, and 26.92% in summer, spring, autumn, and winter, respectively. The disk diffusion method was used to determine the susceptibility of Arcobacter isolates to six antimicrobial drugs. All A. butzleri isolates (n = 24) were significantly resistant to erythromycin (P = 0.0015), ampicillin (P = 0.001), and ciprofloxacin (P = 0.05). All tested A. cryaerophilus strains (n = 4) were susceptible to ampicillin, gentamicin, and amoxicillin–clavulanic acid. Multidrug resistance was observed in 83% of the Arcobacter spp. isolates. Our study detected Arcobacter spp. in Tunisian poultry; because of their multidrug resistance, these species may constitute a public health problem. HIGHLIGHTS

2015 ◽  
Vol 59 (10) ◽  
pp. 6477-6483 ◽  
Author(s):  
Nour Chems el Houda Khennouchi ◽  
Lotfi Loucif ◽  
Nafissa Boutefnouchet ◽  
Hamoudi Allag ◽  
Jean-Marc Rolain

ABSTRACTEnterobacter cloacaeis among the most important pathogens responsible for nosocomial infections and outbreaks. In this study, 77Enterobacterisolates were collected: 27 isolates from Algerian hospitals (in Constantine, Annaba, and Skikda) and 50 isolates from Marseille, France. All strains were identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibility testing was performed by the disk diffusion method. PCR was used to detect extended-spectrum-beta-lactamase (ESBL)-encoding, fluoroquinolone resistance-encoding, and aminoglycoside-modifying enzyme (AME) genes. Epidemiological typing was performed using MALDI-TOF MS with data mining approaches, along with multilocus sequence typing (MLST). Sixty-eight isolates (27 from Algeria, 41 from Marseille) were identified by MALDI-TOF MS asE. cloacae. Resistance to antibiotics in the Algerian isolates was significantly higher than that in the strains from Marseille, especially for beta-lactams and aminoglycosides. Eighteen of the 27 Algerian isolates and 11 of the 41 Marseille isolates possessed at least one ESBL-encoding gene:blaCTX-Mand/orblaTEM. AME genes were detected in 20 of the 27 Algerian isolates and 8 of the 41 Marseille isolates [ant(2″)-Ia,aac(6′)-Ib-cr,aadA1,aadA2, andarmA]. Conjugation experiments showed thatarmAwas carried on a transferable plasmid. MALDI-TOF typing showed three separate clusters according to the geographical distribution and species level. An MLST-based phylogenetic tree showed a clade of 14E. cloacaeisolates from a urology unit clustering together in the MALDI-TOF dendrogram, suggesting the occurrence of an outbreak in this unit. In conclusion, the ability of MALDI-TOF to biotype strains was confirmed, and surveillance measures should be implemented, especially for Algerian patients hospitalized in France.


2021 ◽  
Vol 67 (2) ◽  
pp. 3372-3382
Author(s):  
Brigitta Horváth ◽  
Ferenc Peles ◽  
Judit Gasparikné Reichardt ◽  
Edit Pocklán ◽  
Rita Sipos ◽  
...  

The presence of methicillin-resistant Staphylococcus aureus (MRSA) strains in the food chain has been confirmed by several studies in the European Union, but there are only limited data available in Hungary. The objective of the present study was to investigate the antibiotic resistance of Staphylococcus strains isolated from foods, using classical microbiological, molecular biological methods and the MALDI-TOF-MS technique, as well as the multi-locus sequence typing (MLST) of antibiotic resistant strains. During the study, 47 coagulase-positive (CPS) and 30 coagulase-negative (CNS) Staphylococcus isolates were collected. In the course of the MALDI-TOF-MS investigations, all CPS isolates (n=47) were found to be S. aureus species, while 8 different species were identified in the case of the CNS strains. Methicillin resistance was confirmed in two S. aureus strains, one of which had a sequence type not yet known, while the other MRSA strain was type ST398, which is the most common type of MRSA strain isolated from farm animals in the EU/EEA. (The abbreviation “MRSA” is often used in common parlance, but occasionally in the literature to denote “multidrug-resistant Staphylococcus aureus”. In the authors’ manuscript - the methicillin-resistant pathogen is correctly designated as such. Ed.)


2018 ◽  
Vol 159 (1) ◽  
pp. 23-30
Author(s):  
Emese Juhász ◽  
Miklós Iván ◽  
Júlia Pongrácz ◽  
Katalin Kristóf

Abstract: Introduction: Glucose non-fermenting Gram-negative bacteria are ubiquitous environmental organisms. Most of them are identified as opportunistic, nosocomial pathogens in patients. Uncommon species are identified accurately, mainly due to the introduction of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology practice. Most of these uncommon non-fermenting rods are isolated from lower respiratory tract samples. Their significance in lower respiratory tract infections, such as rules of their testing are not clarified yet. Aim: The aim of this study was to review the clinical microbiological features of these bacteria, especially their roles in lower respiratory tract infections and antibiotic treatment options. Method: Lower respiratory tract samples of 3589 patients collected in a four-year period (2013–2016) were analyzed retrospectively at Semmelweis University (Budapest, Hungary). Identification of bacteria was performed by MALDI-TOF MS, the antibiotic susceptibility was tested by disk diffusion method. Results: Stenotrophomonas maltophilia was revealed to be the second, whereas Acinetobacter baumannii the third most common non-fermenting rod in lower respiratory tract samples, behind the most common Pseudomonas aeruginosa. The total number of uncommon non-fermenting Gram-negative isolates was 742. Twenty-three percent of isolates were Achromobacter xylosoxidans. Beside Chryseobacterium, Rhizobium, Delftia, Elizabethkingia, Ralstonia and Ochrobactrum species, and few other uncommon species were identified among our isolates. The accurate identification of this species is obligatory, while most of them show intrinsic resistance to aminoglycosides. Resistance to ceftazidime, cefepime, piperacillin-tazobactam and carbapenems was frequently observed also. Conclusions: Ciprofloxacin, levofloxacin and trimethoprim-sulfamethoxazole were found to be the most effective antibiotic agents. Orv Hetil. 2018; 159(1): 23–30.


Author(s):  
Zhaomin Cheng ◽  
Pinghua Qu ◽  
Peifeng Ke ◽  
Xiaohan Yang ◽  
Qiang Zhou ◽  
...  

Streptococcus agalactiae colonization in pregnant women can cause postpartum intrauterine infections and life-threatening neonatal infections. To formulate strategies for the prevention and treatment of S. agalactiae infections, we performed a comprehensive analysis of antibiotic resistance and a molecular-based epidemiological investigation of S. agalactiae in this study. Seventy-two S. agalactiae strains, collected from pregnant women, were subjected to antibiotic susceptibility tests; then, the screened erythromycin and clindamycin nonsusceptible isolates were used for macrolides and clindamycin resistance genes detection, respectively. Detection of resistance genes, serotyping, and determination of virulence genes were performed by polymerase chain reaction. The clonal relationships among the colonized strains were evaluated by multilocus sequence typing. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) mass peak analysis was performed to discriminate the specific sequence types (STs). In our study, 69.4% and 47.2% of the strains were nonsusceptible to erythromycin and clindamycin, respectively; the multidrug resistance rate was 66.7%. All erythromycin nonsusceptible strains harbored resistance genes, whereas only 52.9% of the clindamycin nonsusceptible strains possessed the linB gene. Erythromycin resistance was mainly mediated by the ermB or mefA/E genes. Four serotypes were identified, and the most common serotype was serotype III (52.8%), followed by Ib (22.2%), Ia (18.0%), and II (4.2%). All the strains were divided into 18 STs that were assigned to nine clonal complexes. Most of the major STs were distributed into specific serotypes, including ST19/serotype III, ST17/serotype III, ST485/serotype Ia, ST862/serotype III, and ST651/serotype III. Analysis of virulence genes yielded seven clusters, of which bca-cfb-scpB-lmb (61.6%) was the predominant virulence gene cluster. Among all ST strains distributed in this region, only the ST17 strains had a mass peak at 7620 Da. The outcomes of this study are beneficial for the epidemiological comparison of colonized S. agalactiae in different regions and may be helpful for developing the strategies for the prevention of S. agalactiae infection in Guangzhou. Furthermore, our results show that MALDI-TOF MS can be used for the rapid identification of the ST17 strains.


Bacteriophage ◽  
2014 ◽  
Vol 4 (3) ◽  
pp. e29011 ◽  
Author(s):  
Christopher R Cox ◽  
Nicholas R Saichek ◽  
Herbert P Schweizer ◽  
Kent J Voorhees

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Kwabena O. Duedu ◽  
George Offei ◽  
Francis S. Codjoe ◽  
Eric S. Donkor

Enteric bacteria are commonly implicated in hospital-acquired or nosocomial infections. In Ghana, these infections constitute an important public health problem but little is known about their contribution to antibiotic resistance. The aim of the study was to determine the extent and pattern of antibiotic resistance of enteric bacteria isolated from patients and environmental sources at the Accra Psychiatric Hospital. A total of 265 samples were collected from the study site including 142 stool and 82 urine samples from patients, 7 swab samples of door handle, and 3 samples of drinking water. Enteric bacteria were isolated using standard microbiological methods. Antibiograms of the isolates were determined using the disc diffusion method. Overall, 232 enteric bacteria were isolated. Escherichia coli was the most common (38.3%), followed by Proteus (19.8%), Klebsiella (17.7%), Citrobacter (14.7%), Morganella (8.2%), and Pseudomonas (1.3%). All isolates were resistant to ampicillin but sensitive to cefotaxime. The resistance ranged from 15.5% to 84.5%. Multidrug resistance was most prevalent (100%) among isolates of Proteus and Morganella and least prevalent among isolates of Pseudomonas (33.3%). Multidrug resistance among enteric bacteria at the study hospital is high and hence there is a need for screening before therapy to ensure prudent use of antibiotics.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


2013 ◽  
Vol 26 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Jaroslav Hrabák ◽  
Eva Chudáčková ◽  
Radka Walková

SUMMARYMatrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied as an identification procedure in clinical microbiology and has been widely used in routine laboratory practice because of its economical and diagnostic benefits. The range of applications of MALDI-TOF MS has been growing constantly, from rapid species identification to labor-intensive proteomic studies of bacterial physiology. The purpose of this review is to summarize the contribution of the studies already performed with MALDI-TOF MS concerning antibiotic resistance and to analyze future perspectives in this field. We believe that current research should continue in four main directions, including the detection of antibiotic modifications by degrading enzymes, the detection of resistance mechanism determinants through proteomic studies of multiresistant bacteria, and the analysis of modifications of target sites, such as ribosomal methylation. The quantification of antibiotics is suggested as a new approach to study influx and efflux in bacterial cells. The results of the presented studies demonstrate that MALDI-TOF MS is a relevant tool for the detection of antibiotic resistance and opens new avenues for both clinical and experimental microbiology.


2013 ◽  
Vol 7 (11-12) ◽  
pp. 767-778 ◽  
Author(s):  
Markus Kostrzewa ◽  
Katrin Sparbier ◽  
Thomas Maier ◽  
Sören Schubert

2020 ◽  
Vol 18 ◽  
Author(s):  
Elhassan Benyagoub ◽  
Miaad K. Alkhudhairy ◽  
S. Mohamed Benchaib ◽  
Abdelmadjid Zaalan ◽  
Youcef Mekhfi ◽  
...  

Background: Emergence of multidrug-resistant uropathogenic strains mainly the global spread of extended-spectrum betalactamase (ESBL) genes accompanied both by uncontrolled use of antibacterial agents and a considerable decrease in their activities makes the monitoring of the resistance pattern one of necessary means that could help the medical practitioners to choose the best treatment. For this purpose and during four months from March 1 to June 30 (2019), an experimental study has been carried out on urine specimens of 123 inpatients (IP) and outpatients (OP) at infectious disease service Boudjemaa TOURABI Public Hospital of Bechar (Algeria), aiming the detection of ESBL-producing Enterobacteriaceae uropathogenic strains. Methods: Firstly, the antibiotic susceptibility testing has been carried out by using the disk diffusion method to determine not only the multidrug resistance patterns, but also the multiple antibiotic resistance indexes of uropathogenic strains isolated from clinical IP and OP samples. Secondly, the ESBL detection was done by using the following methods: synergy tests based on the synergy between a thirdgeneration cephalosporin and clavulanate, double-disc synergy test (DDST) and phenotypic tests on a cloxacillin-containing agar. Results: As a result, 56 patients had a urinary tract infection (UTI) in overall 123 patients; a frequency of 45,52%. Through a UTI’s frequency of 64,7%, the female gender was the most affected. All age groups were affected by UTI, with a mean age of 38,47±19,97 years old. Knowing that UTIs’ patients having ages ranged from 16 to 49 years old were most affected compared to other ages’ groups, with a frequency of 66,6 and 50% for female and male gender, respectively. The microbial strains represented by the bacteria group were predominant, ie (98,22%) followed by yeasts (1,78%), where Gram-negative bacilli showed (96,36%) of the uropathogenic agents, so (3,64%) were Gram-positive bacteria. The antibiotic resistance profile of isolated Enterobacteriaceae showed very high resistance rates for the species of Escherichia coli, Klebsiella spp, and Proteus spp to aminopenicillins, cephalosporins, and less against carbapenems and other drug groups. E. coli had presented the highest multidrug resistance followed by Klebsiella spp with a MAR index ranged from 0,53 to 0,82. Within this range, a total of 28 isolate (25 E. coli, 2 Klebsiella spp, and 1 Proteus mirabilis) had shown resistance against 9 to 14 out of the 17 tested antibiotics. The rate of ESBL-producing Enterobacteriaceae strains was 23,07 and 55,26% for inpatients and outpatients respectively, where E.coli was the most important ESBL producers out of all isolated strains. Conclusion: An alarming ESBLs rate for outpatients which is usually higher among inpatients with UTI, who receive several classes of antibiotics. Such condition should be considered as a major public health concern, and measures must be taken to establish the sources and drivers of this issue. Thus, the findings of this research pushes health sector stakeholders as well as scientific communities to act on reducing the transmission of the multidrug-resistant strains that threatens several classes of life-saving antibiotics.


Sign in / Sign up

Export Citation Format

Share Document