scholarly journals Coordination of DNA Synthesis and Histone Gene Expression During Normal Cell Cycle Progression and After DNA Damage

Cell Cycle ◽  
2004 ◽  
Vol 3 (6) ◽  
pp. 693-695 ◽  
Author(s):  
Jiyong Zhao
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lionel Condé ◽  
Yulemi Gonzalez Quesada ◽  
Florence Bonnet-Magnaval ◽  
Rémy Beaujois ◽  
Luc DesGroseillers

AbstractBackgroundStaufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from theSTAU2gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation.ResultsCRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism.ConclusionsThese results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.


2019 ◽  
Vol 132 (2) ◽  
pp. jcs223123 ◽  
Author(s):  
Hidemasa Goto ◽  
Toyoaki Natsume ◽  
Masato T. Kanemaki ◽  
Aika Kaito ◽  
Shujie Wang ◽  
...  

2009 ◽  
Vol 185 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Arne Lindqvist ◽  
Verónica Rodríguez-Bravo ◽  
René H. Medema

The decision to enter mitosis is mediated by a network of proteins that regulate activation of the cyclin B–Cdk1 complex. Within this network, several positive feedback loops can amplify cyclin B–Cdk1 activation to ensure complete commitment to a mitotic state once the decision to enter mitosis has been made. However, evidence is accumulating that several components of the feedback loops are redundant for cyclin B–Cdk1 activation during normal cell division. Nonetheless, defined feedback loops become essential to promote mitotic entry when normal cell cycle progression is perturbed. Recent data has demonstrated that at least three Plk1-dependent feedback loops exist that enhance cyclin B–Cdk1 activation at different levels. In this review, we discuss the role of various feedback loops that regulate cyclin B–Cdk1 activation under different conditions, the timing of their activation, and the possible identity of the elusive trigger that controls mitotic entry in human cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Leonardo Santos ◽  
Laura Colman ◽  
Paola Contreras ◽  
Claudia C. Chini ◽  
Adriana Carlomagno ◽  
...  

Abstract The protein Deleted in Breast Cancer-1 is a regulator of several transcription factors and epigenetic regulators, including HDAC3, Rev-erb-alpha, PARP1 and SIRT1. It is well known that DBC1 regulates its targets, including SIRT1, by protein-protein interaction. However, little is known about how DBC1 biological activity is regulated. In this work, we show that in quiescent cells DBC1 is proteolytically cleaved, producing a protein (DN-DBC1) that misses the S1-like domain and no longer binds to SIRT1. DN-DBC1 is also found in vivo in mouse and human tissues. Interestingly, DN-DBC1 is cleared once quiescent cells re-enter to the cell cycle. Using a model of liver regeneration after partial hepatectomy, we found that DN-DBC1 is down-regulated in vivo during regeneration. In fact, WT mice show a decrease in SIRT1 activity during liver regeneration, coincidentally with DN-DBC1 downregulation and the appearance of full length DBC1. This effect on SIRT1 activity was not observed in DBC1 KO mice. Finally, we found that DBC1 KO mice have altered cell cycle progression and liver regeneration after partial hepatectomy, suggesting that DBC1/DN-DBC1 transitions play a role in normal cell cycle progression in vivo after cells leave quiescence. We propose that quiescent cells express DN-DBC1, which either replaces or coexist with the full-length protein, and that restoring of DBC1 is required for normal cell cycle progression in vitro and in vivo. Our results describe for the first time in vivo a naturally occurring form of DBC1, which does not bind SIRT1 and is dynamically regulated, thus contributing to redefine the knowledge about its function.


2010 ◽  
Vol 24 (22) ◽  
pp. 2531-2542 ◽  
Author(s):  
S. Wu ◽  
W. Wang ◽  
X. Kong ◽  
L. M. Congdon ◽  
K. Yokomori ◽  
...  

2011 ◽  
Vol 286 (14) ◽  
pp. 12796-12802 ◽  
Author(s):  
Kyung-Jong Lee ◽  
Yu-Fen Lin ◽  
Han-Yi Chou ◽  
Hirohiko Yajima ◽  
Kazi R. Fattah ◽  
...  

Author(s):  
Takashi Hashimoto ◽  
Maki Kobayashi ◽  
Kazuki Kanazawa

Objective: The effects of 6-MSITC on cell cycle progression were investigated in quiescent mouse epidermal JB6 cells. Background: 6-Methylsulfinylhexyl isothiocyanate (6-MSITC) derived from wasabi (Wasabia japonica) has been reported to prevent tumor development in vivo. Material and methods: Treatment with epidermal growth factor (EGF) to quiescent JB6 cells, which were serum-starved for 36 h, promoted cell cycle progression from the G0/G1 phase to the S phase. Effects of pretreatment with 6-MSITC on cell cycle progression were estimated by flowcytometry and real-time RT-PCR. Results: Pretreatment with 6-MSITC at 0.25-1.0 μg/ml prior to the growth stimulation with EGF significantly inhibited cell cycle progression. Pretreatment with 6-MSITC inhibited the gene expression of DNA synthesis-related proteins cyclin A2, dumbbell former 4, and proliferating cell nuclear antigen. Conclusion: These results showed that 6-MSITC inhibits cell cycle progression in quiescent cells, accompanied by the inhibition of gene expression of DNA synthesis proteins.


1991 ◽  
Vol 11 (8) ◽  
pp. 4111-4120
Author(s):  
B A Morgan ◽  
B A Mittman ◽  
M M Smith

The N-terminal domains of the histones H3 and H4 are highly conserved throughout evolution. Mutant alleles deleted for these N-terminal domains were constructed in vitro and examined for function in vivo in Saccharomyces cerevisiae. Cells containing a single deletion allele of either histone H3 or histone H4 were viable. Deletion of the N-terminal domain of histone H4 caused cells to become sterile and temperature sensitive for growth. The normal cell cycle progression of these cells was also altered, as revealed by a major delay in progression through the G2 + M periods. Deletion of the N-terminal domain of histone H3 had only minor effects on mating and the temperature-sensitive growth of mutant cells. However, like the H4 mutant, the H3 mutants had a significant delay in completing the G2 + M periods of the division cycle. Double mutants containing N-terminal domain deletions of both histone H3 and histone H4 were inviable. The phenotypes of cells subject to this synthetic lethality suggest that the N-terminal domains are required for functions essential throughout the cell division cycle and provide genetic evidence that histones are randomly distributed during chromosome replication.


Sign in / Sign up

Export Citation Format

Share Document