scholarly journals In Vivo Analysis of Drosophila Deoxyribonucleoside Kinase Function in Cell Cycle, Cell Survival and Anti-Cancer Drugs Resistance

Cell Cycle ◽  
2006 ◽  
Vol 5 (7) ◽  
pp. 740-749 ◽  
Author(s):  
Kevin Legent ◽  
Magali Mas ◽  
Annie Dutriaux ◽  
Solange Bertrandy ◽  
Domenico Flagiello ◽  
...  
2013 ◽  
Vol 14 (7) ◽  
pp. 963-974 ◽  
Author(s):  
Vincent Jamier ◽  
Wioleta Marut ◽  
Sergio Valente ◽  
Christiane Chereau ◽  
Sandrine Chouzenoux ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Junjie Zeng ◽  
Wenying Zhao ◽  
Shuhua Yue

The high attrition rates of anti-cancer drugs during clinical development remains a bottleneck problem in pharmaceutical industry. This is partially due to the lack of quantitative, selective, and rapid readouts of anti-cancer drug activity in situ with high resolution. Although fluorescence microscopy has been commonly used in oncology pharmacological research, fluorescent labels are often too large in size for small drug molecules, and thus may disturb the function or metabolism of these molecules. Such challenge can be overcome by coherent Raman scattering microscopy, which is capable of chemically selective, highly sensitive, high spatial resolution, and high-speed imaging, without the need of any labeling. Coherent Raman scattering microscopy has tremendously improved the understanding of pharmaceutical materials in the solid state, pharmacokinetics of anti-cancer drugs and nanocarriers in vitro and in vivo. This review focuses on the latest applications of coherent Raman scattering microscopy as a new emerging platform to facilitate oncology pharmacokinetic research.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1632
Author(s):  
Peisen Zhang ◽  
Junli Meng ◽  
Yingying Li ◽  
Zihua Wang ◽  
Yi Hou

Determining therapeutic efficacy is critical for tumor precision theranostics. In order to monitor the efficacy of anti-cancer drugs (e.g., Paclitaxel), a pH-sensitive ratiometric fluorescent imaging probe was constructed. The pH-sensitive ratiometric fluorescent dye ANNA was covalently coupled to the N-terminal of the cell-penetrating TAT peptide through an amidation reaction (TAT-ANNA). The in vitro cellular experiments determined that the TAT-ANNA probe could penetrate the cell membrane and image the intracellular pH in real time. The in vivo experiments were then carried out, and the ratiometric pH response to the state of the tumor was recorded immediately after medication. The TAT-ANNA probe was successfully used to monitor the pharmacodynamics of anti-cancer drugs in vivo.


Digestion ◽  
1996 ◽  
Vol 57 (1) ◽  
pp. 22-28 ◽  
Author(s):  
G. Weckbecker ◽  
F. Raulf ◽  
L. Tolcsvai ◽  
C. Bruns
Keyword(s):  

2012 ◽  
Vol 30 (5_suppl) ◽  
pp. 106-106
Author(s):  
Robert Benjamin Den ◽  
Steve Ciment ◽  
Ankur Sharma ◽  
Hestia Mellert ◽  
Steven McMahon ◽  
...  

106 Background: Prostate cancer is the most frequently diagnosed malignancy and the second leading cause of cancer death in U.S. men. The retinoblastoma tumor suppressor protein, RB, plays a critical role in cell cycle regulation and loss of RB has been observed in 25-30% of prostate cancers. We have previously shown that RB loss results in a castrate resistant phenotype, however the consequences of RB status with regard to radiation response are unknown. We hypothesized that RB loss would downregulate the G1-S cell cycle checkpoint arrest normally induced by irradiation, inhibit DNA repair, and subsequently sensitize cells to ionizing radiation. Methods: Experimental work was performed with multiple isogenic prostate cancer cell lines (hormone sensitive: LNCaP and LAP-C4 cells and hormone resistant C42, 22Rv1 cells; stable knockdown of RB using shRNA). Gamma H2AX assays were used to quantitate DNA damage and PARP cleavage and Caspase 3 were used to quantitate apoptosis. FACS analysis with BrdU was used to assess the cell cycle. Cell survival was measured using the clonogenic cell survival assay. In vivo work was performed in nude mice with tumor xenografts. Results: We observed that loss of RB increased radioresponsiveness in both transient and clonogenic cell survival assays in both hormone sensitive and castrate resistant cell lines (p<0.05). Cell death was not mediated through increased apoptosis nor was perturbations in cell cycle noted. However, loss of RB effected DNA repair as measured by gamma H2AX staining as well as cellular senescence. In vivo xenografts of the RB deficient tumors exhibited diminished tumor mass, lower PSA kinetics and decreased tumor growth after treatment with single fraction of ionizing radiation in comparison to RB intact tumors (p<0.05). Conclusions: Loss of RB results in a differential response to ionizing radiation. Isogenic cells with RB knockdown are more sensitive to DNA damage and result in reduced cell survival. The underlying mechanism appears to be related to DNA damage repair and cellular senescence.


1995 ◽  
Vol 23 (4) ◽  
pp. 1073-1079 ◽  
Author(s):  
T. M. Allen ◽  
I. Ahmad ◽  
D. E. Lopes de Menezes ◽  
E. H. Moase
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document