scholarly journals Comparative Performances of an Activated Sludge Process and a Membrane Bioreactor for the Treatment of a Textile Industry Effluent

2017 ◽  
Vol 07 (05) ◽  
Author(s):  
Chamam B ◽  
Heran M ◽  
Amar RB ◽  
Grasmick A
2018 ◽  
Vol 8 (3) ◽  
pp. 104
Author(s):  
Putri Sri Komala ◽  
Agus Jatnika Effendi ◽  
IG Wenten ◽  
W Wisjnuprapto

Tempeh waste is a form of waste that still has an economic value, due to its relatively high organic and nutrient content compared to yeast extract. In this research, tempeh waste was used as a co-substrate for the removal of azo dye from textile industry effluent using an aerobic-anaerobic membrane bioreactor. The bioreactor consists of a modified activated sludge process, i.e. a contact-stabilization process coupled with anoxic reactor and combined with an external ultrafiltration membrane to replace the sedimentation process in conventional activated sludge process. The feed consists of Remazol Black-5 azo dye at a concentration of 110-120 mg/L, and tempeh waste as an organic and nutrient source at 8-10% v/v concentration. An experiment was done to measure the effect of hydraulic retention time on dye removal, by varying the HRT in the contact tank at 1, 1.5, 2, 2.5, and 3 hours, and that of  stabilization- and anoxic tanks kept constant at 4 and 3 hours. From the experiment a 41-51% removal of the dye and 46-65% removal of organic compounds were obtained. The highest dye and organic compound removal was obtained at a contact HRT of 2 hours, namely 51% of dye removal and 65% of organic removal efficiencies. An auto-oxidation process occurs in the contact tank, resulting in an increase in the dye concentration.Keywords: tempeh waste, membrane bioreactor, Hydraulic Retention Time (HRT), contact tank, azo dye. Abstrak Limbah tempe merupakan salah satu limbah yang masih memiliki nilai ekonomis, karena kandungan senyawa organik dan nutrien yang terdapat didalamnya masih relatif tinggi jika dibandingkan dengan yeast extract. Dalam penelitian ini limbah tempe digunakan sebagai ko-substrat untuk penyisihan zat warna azo dari industri tekstil dengan menggunakan bioreaktor membran aerob-anaerob. Bioreaktor terdiri dari modifikasi proses lumpur aktif yaitu proses kontak-stabilisasi yang dihubungkan dengan reaktor anoksik dan dikombinasikan dengan membran ultrafiltrasi secara eksternal. Umpan terdiri dari zat warna azo Remazol Black-5 pada konsentrasi 110-120 mg/L dan limbah tempe sebagai sumber organik dan nutrien dengan konsentrasi 8-10% v/v. Percobaan dilakukan untuk mengamati pengaruh waktu retensi hidrolik (hydraulic retention time, HRT) tangki kontak terhadap penyisihan warna dengan variasi HRT tangki kontak antara 1, 1½, 2, 2½ dan 3 jam, sedangkan tangki stabilisasi dan anoksik pada HRT konstan 4 dan 3 jam. Dari percobaan dihasilkan penyisihan warna berkisar antara 41-51% dan penyisihan senyawa organik antara 46-65%. Baik penyisihan warna maupun senyawa organik terbesar dihasilkan pada HRT kontak 2 jam yaitu 51% untuk penyisihan warna dan 65% untuk penyisihan senyawa organik. Pada tangki kontak terjadi autoksidasi yang menyebabkan kenaikan konsentrasi warna.Kata Kunci: limbah tempe, bioreaktor membran, waktu retensi hidrolik (HRT), tangki kontak, zat warna azo.


2001 ◽  
Vol 43 (10) ◽  
pp. 203-209 ◽  
Author(s):  
S. Adham ◽  
P. Gagliardo ◽  
L. Boulos ◽  
J. Oppenheimer ◽  
R. Trussell

The feasibility of the membrane bioreactor (MBR) process for water reclamation was studied. Process evaluation was based on the following: literature review of MBRs, worldwide survey of MBRs, and preliminary costs estimates. The literature review and the survey have shown that the MBR process offers several benefits over the conventional activated sludge process, including: smaller space and reactor requirements, better effluent water quality, disinfection, increased volumetric loading, and less sludge production. The MBR process can exist in two different configurations, one with the low-pressure membrane modules replacing the clarifier downstream the bioreactor (in series), and the second with the membranes submerged within the bioreactor. Four major companies are currently marketing MBRs while many other companies are also in the process of developing new MBRs. The MBR process operates in a considerably different range of parameters than the conventional activated sludge process. The preliminary cost evaluation has shown that the MBR process is cost competitive with other conventional wastewater treatment processes.


2014 ◽  
Vol 16 (9) ◽  
pp. 2199-2207 ◽  
Author(s):  
Chiqian Zhang ◽  
Guangzhi Wang ◽  
Zhiqiang Hu

The membrane bioreactor (MBR) activated sludge process is being applied more and more for wastewater treatment due to its high treatment efficiency and low space requirement.


1996 ◽  
Vol 34 (9) ◽  
pp. 197-203 ◽  
Author(s):  
H. Winnen ◽  
M. T. Suidan ◽  
P. V. Scarpino ◽  
B. Wrenn ◽  
N. Cicek ◽  
...  

The activated sludge process has been used extensively to treat municipal wastewater. The membrane bioreactor (MBR) process is a modification of the conventional activated sludge process where the clarifier is replaced with a membrane system for separation between the mixed liquor and the effluent. This paper presents the biological and physical performance data of a pilot-scale membrane bioreactor system, fed with a synthetic wastewater. At steady state, particularly high effluent quality was obtained and maintained for an extended period of time. Heterotrophic plate counting showed that the membrane retains heterotrophic microorganisms. Bacteriophage MS-2 was used to determine the retention of viruses. The membrane proved to retain the MS-2 virus.


Author(s):  
Watsa Khongnakorn ◽  
Christelle Wisniewski

In wastewater treatment, the membrane bioreactor (MBR) holds the potential to become one of the new generation processes, ensuring effluent quality and disinfection of sufficiently high levels to allow water reuse and recycle. Furthermore, the possibility to operate with high biomass concentrations (2 to 5 times higher than in conventional activated sludge process, CAS) allows to impose high solid retention times(SRT) that can be beneficial to a sludge production reduction and so to a reduction of disposal costs. These non-conventional operating conditions (high SRT) can also induce different sludge characteristics and dewatering aptitude, which are essential parameters for the optimization of the sludge post-treatment, like mechanical dewatering. The objective of this work was to study the performances of a complete sludge retention membrane bioreactor, in terms of organic removal efficiency, sludge production and sludge dewaterability. The adaptability of Activated Sludge Model 3 (ASM3) to provide good prediction results of high SRT-MBR was studied. Typical parameters adopted to describe sludge dewaterability were quantified and compared with the conventional activated sludge process (CAS).


Sign in / Sign up

Export Citation Format

Share Document